M1a.

Remember that overflow is defined as the result of the operation making no
sense, which in 2's complement representation is equivalent to the
mathematical result not fitting in the format.

- if any of the operands is zero, there is no overflow

- if one of the operands is positive, and the other is negative, there can be no
overflow

- if the two operands have the same sign, we have the following cases:

10 (-2) + 10 (-2) = 00 (0 !'=-4) 1 case
11 (-1)) +10(-2) =01 (1 !'=-3) 1 case
10(-2) +11 (-1) =01 (1 !'=-3) 1 case
01(1)+01(1)=10(-2'=2) 1 case

So there are 4 cases from the total 16.

M1b.
The easiest solution isto represent all possible values.
An 8-bit exponent covers [0-255], which with 127 bias means [-127-128].

Nibble for a float. SEEM. Exponent bias = 1, thus 00,01,10,11 =0,1,2,3 -1,0,1,2

Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +- fl. pt. #
255 0 +/- 0
255 nonzero NaN
1000] -0

1001| denorm: 0.1 x2°=0.1=1/2
1010] -10x2°0=-1

1011] -11x2°=-15

1100] -10x2t=10=-2

1101] -11x2t=10=-3

111 0| reserved for —oo

1111 reserved for NaN
...similarly for positive numbers

Ans. MostNeg= [-3 =0b1101 = 0xD],
SmallestPos = [1/2 = 0b0001 =0x1]
NextSmallestPos = [1=0b0010=0x2]

M2a.

Static = 0 (no globals)
Stack =4 (1 pointer)
Heap =48 (2* [8 (2ints) + 4 (4 chars) + 8 (2 ptrs) + 4 (1 ptr)]) =2*24 =48

M2Db.

Advantage: Saves a malloc call (could take a long
time to search freelist) Alex: less internal
fragmentation (?), freeing only requires one call
(less programmer effort)

Disadvantage : Might not succeed where the other
would have (if memory fragmented not one large chunk

but two smaller chunks), we have to wait wuntil both
are unused before we can freel!

M2c.

T F We discussed 3 schemes: K&R, slab allocator |,

and the buddy system . It's possible to write

code to make any of these the best and any of
these the worst performer (i.e., one will

never always dominate another, performance-

wise).

One of the truisms about these schemes is that there
IS no single best one.

T E Mark and sweep garbage collection does not
work for circular data structures.

That's reference counting to which you're referring,
my friend.

T E If you wrote code that had no calls to free
and we only garbage collect when we have to,
reference counting will start collecting

before copying .

Copying would start collecting before RC, because it
HAS to GC when the memory is half- full (RC can
wait until it's virtually all full).

M3.

(a): NO. Pointer types (to float and to pointer to

dlist) have the same size. Once this has been said, the

author of line (a) should be turned into shark bait.
(b): NO. Pointer arithmetic is fine.

(c): CT. “p[i][j].next” requires a “struct dlist *
assignment. p[i][j] is a “struct dlist”, so the right
past should be preceded by an ampersand.

Right: pli][jl.next = &(p[i][j+1]);

(d): RT, the last iteration is out of bound. Note that
this error occurs only when the out-of- bound memory
is protected. Otherwise, we are just overwriting
another position of memory. If we are unlucky, that
“another position of memory” will correspond to the
heap metadata, and we will realize this only when
trying to free the following memory position.

(e): 70 because it's 5*14.

M4.

01
02
03
04
05
06
07
08
09
10
11 shiftLbyO:

add $dst, $0, $shantreg

andi dst dst, OxIif

sl | dst dst, 6

lui $at, shiftLbyO(upper)

ori $at, $at, shiftLbyO(lower)
lw $at, O($at)

or dst dst at

lui $at, shiftLbyO(upper)

ori $at, $at, shiftLbyO(lower)
sw $dst, 0O(%at)

sll $dst, $src, O

HFHRIFHFHHHEHFHHFH

copy $shantreg so we don’t alter it

The shant has a maxi mum si ze

“slide” the shant to the right |ocation
This lui and the followi ng ori serve to...
“point” to the shiftLbyO instruction

reg now contains the shiftLbyO inst
“paste” shamt into instruction

Again, lui and the follow ng oriserve to...
“point” to the shiftLbyO instruction

Sel f-nodi fy our code

The shiftLbyO instruction

F1la.

There are 2% = 64 lines in the truth table. That equates to a 64-bit
which is 16E$.= 16Exa$

F1b.

o
o

RFRRROOOO>
P FRPOOFRFPOOW
roORrRORORON
OO OFRPROFREFREM

Foo = XY + XZ + YZ
Foo is the NotMajority , or AntiMajority , or Minority circuit

Flc.

QD
=

PRrRPRROOOOD
P RPOORPPFRPROOWW
RPORORORON
PORROORrROm

We are requested to use C as the selector line of a 1-bit nultiplexor. W
know a nultiplexor has the formO= MIX(SSMN) => O= S M+ not(S) N

Bar = Anot(B) + AC+ not(B) C=Anot(B) (C+ not(C)) + AC+ not(B) C =
C(Anot(B) + A+ not(B)) + not(C) (A not(B)) =
C (A + nnot(B)) + not(C (A not(B))

We need a not gate for B, one OR for the C part, and one AND for the not(C
part.

not B = Not (B)
Bar = MUX(C, AND(A notB), OR(A, notB))

—

°3%3

number,

F2a.

1. Add a small adder with one input tied to 1, the other tied to busA, &
output tied to the MemToReg mux

2. Change the 2-input MemToReg mux to be a 3-input mux (adding output of
adder)

3. Change the width of MemToReg from 1 to 2 (and the corresponding logic)

4. Change the RegDst-controlling 2-input Rd/Rt mux to be a 3-input Rd/Rt/Rs

mux
5. Change the width of RedDst from 1 to 2 (and the corresponding logic)
F2b.

NO because we can't write two registers at once

| oop: ## [S=Stage, w=written, r=read]

1 addi $t0, $tO0, 4 ## $t0 w S5 (need 2 no-ops for $t0)
2 lw $v0, O0($t0) ## $t0 r S2, $v0 w S5 (need 2 no-ops for $v0)
3 sw $v0, 20($t0) ## $v0, $tO0 r S2

4 |w $s0, 60($t0) ## $t0 r S2, $s0 w S5 (need 2 no-ops for $s0)
5 bne $s0, $0, loop ## $sO r S2, ALU S3

BEFCRE

addi |
| w
S
I w
bne

— 0O

.
-9 >
—Q»=Zz
¥>=<g
>z s
<z

AFTER

addi | D A M
no- op

no- op

| w |
no- op

no- op

S

| w

no- op

no- op

bne

9__=
—9__%
Q>
>Z
==
P %

2@.5, 2@.5, 2@&.5

F3b easy.

The addi |whazard is handled with forwarding, now we only have to

fill the load and branch delay slots. Thus, we can simplify the
code to be:.

Loop:

1 addi $t0, $t0, 4
2 1w $v0, O($t0)
3 sw $v0, 20($t0)
4 1w $s0, 60($t0)
5 bne $s0, $0, |oop

We can fill both load delay slots at once by swapping the swand
the lower |Iwand inserting a no-opin the branch-delay slot.

1 addi $t0, $t0, 4

2 lw $v0, O0($t0)
4 |w $s0, 60(%t0)
3 sw $v0, 20($tO0)
5 bne $s0, $0, |oop
6 no-op

Or we could move the swto the branch-delay slot and insert a no-
opin the |wsO delay slot. But what if we swapped the two loads?
Hmmm...

Loop:
1 addi $tO0, $tO0, 4

2 lw $v0, O0($tO0)
4 lw $s0, 60($t0)
6 no-op

5 bne $s0, $0, |oop
3 sw $v0, 20($tO0)

We can’'t move one of the |Iws to the branch-delay slot because we
don't know what instruction is after ours, and since there are no
hardware interlocks (stalls on unprotected loads), we could have
incorrect behavior.

F3b hard.

It seems like we're stuck! The two Iwinstructions “poison” $vO and
$s0 for one cycle, where nobody can read them immediately. But

the two following instructions read $vO and $s0! What to do, what
to do... Well certainly the beq has to be at or near the end of the
loop - ideally one away from the end. We'll need to fill its

branch delay slot, and there can't be a Iw $s0 right before it. So
that constrains us to:

| oop:
1 addi $t0, $t0, 4

Can't be lw $s0 (so can be sw $v0 or |w $v0)

5 bne $s0, $0, |oop

So one constraint is that the Iw $s0 can’'t be before it. And we've
got to fill the branch-delay slot. We can't put a load there
because we don’'t know what comes after our snippet. So the only
movable instruction is the sw But slot 3 can now only be Iw $vO,
which leaves |w $s0 for slot 2. This also comes from looking at
the last *“easy” solution and swapping the two loads.

| oop:

1 addi $t0, $t0, 4

4 lw $s0, 60(%$t0)
2 lw $v0, 0($tO0)
5 bne $s0, $0, | oop
3 sw $v0, 20($t0)

F4a.

The first- level data cache for a certain processor
can cache 64 KB of physical memory. Assume that the
word size is 32 bits, the block size is 64 bytes, the
size of the physical memory is 2 GB, and the cache is
4-way set associative.

a) How many bits are needed for the TIO?

Offset: 64-byte block, byte- addressing 2° bits to
specify byte Offset=6 .

Index: 64 KB cache /64 bytes = 1K blocks.
#sets = 1K blocks [/ 4-way set- associative = 256
sets = 2%sets Index=8 .
Tag = 32 bits - (8+6) = 18
F4b.

Double the Cache Size Offset = 0, Index +1,tag
follows -1

Double the word size (from 32 bits to 64 bits) Offset
= 0, Index=0, Tag+32

Change the associativity to fully associative
Offset=0, Index-8, Tag+8 (no index!)

F4c.

Many reasons:

e Memory protection! (user-user and program-program)

e Without it, a program won't be able to “think” it
can address all 32-bits. (remember, the OS, other
apps & utilities are also running). E.g., if
photoshop decides to open up a huge TIFF, nothing
will be able to run!

* You can simultaneously run many large programs
very efficiently because only a small subset
will need to resident at any one time

« “Better programmer productivity since
programmers don’t have to manage memory overlays
themselves” and

« “Enhanced portability since the program has no
dependencies on the physical configuration of

the machine” (from
http://www2.parc.com/csl/groups/sdal/projects/oi/workshop- 94/foil/note-
vmem-advantages.html)

Fa4d.

32-bit virtual address space, 64 MB physical memory
and a 4 KB page size.

How many virtual pages are there? 2% bytes/VA-space /2%
bytes/page = 2?° = 1M

How many physical pages are there? 2% bytes/PA-space /2%
bytes/page = 2" = 16K

l-level page-table, each entry 4B, table size? 1M pages *
4 Bytes/page = 2?’= 4MB.

F5a.
CPU Time = InstructionCount * CPl * ClockCycleTime

Want:
CPU TimeA = CPU TimeB
which is

InstructionCount o *CPl A * ClockCycleTime o = InstructionCount g *
CPlg * ClockCycleTime &

But
InstructionCount o = InstructionCount g (same pro -
gram run through botht!)

Thus
CPl A * ClockCycleTime a = CPlg * ClockCycleTime s

or
CPla / ClockCycleFrequency A~ = CPlg/ ClockCycle -
Frequency &

or

CPl o *ClockCycleFrequency g = CPlIg * ClockCycle -
Frequency a
which is
CPl s, *1GHz = CPlg * 3GHz
And dividing both sides by 1GHz gives
CPlA = 3 *CPlg

Calculating CPI (and plugging into the above
equation) gives:
2*3+3* +5*3=3*[.2*1+.3*1 +.5*2]
Multiplying both sides by 10 (to get those fractions
out) gives
2*3+3* +5*3=3*[2*1+3*1+5 *2]
Dividing both sides by 3 (it’'s in every term) gives
2+ +5= 2*1+3*1+5*2 +7 = 2 +3 +10
= 8

F5Dh.

Network transmission time : 1000[B]x8[b/B]/21000[Mb/s] = 8000b/
(1000b/ pus) = 8 ps

Effective bandwidth : 8000b/(X+8)s = 10 Mb/s X+8=800
X=792us

F5c.

What should RAID O be called? AID, since there’'s NO
redundancy!

RAID 6: TWO drive failures

Highest Data-rate 1/0O device? Gigabit Ethernet (@ 1x10° b/s),
RamDisk (even higher!)

New Benchmarks? Availability!

