
 University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Science

Spring 2004 Instructor: Dan Garcia 2004-05-22

 CS61C Final 
Last Name

First Name

Student ID Number

Login cs61c-

The name of your TA (please circle) Alex Chema Jeremy Paul Roy

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of the
exam contents nor will I share the contents with others

in CS61C who have not taken it yet. (please sign)

 Instructions
You are allowed to use two 8.5" x 11" double-sided handwritten pages of notes. No calculators are
allowed. This booklet contains questions M0-M4 and F1-F5 on 10 numbered pages (including the
cover page) and 3 duplicated pages from P&H and K&R. Write all your answers on this exam;
show all work and do not hand in other pieces of paper. Question M0 (+1 points if correct)
involves filling in the front of this page and putting your name & login on every sheet of paper.
You have 3 hours to complete the exam. Good skill!

Problem M0 M1 M2 M3 M4 Total
Minutes 0 15 15 15 15 60

Max Score 1 11 11 11 11 45

Your Score

Problem F1 F2 F3 F4 F5 Total
Minutes 24 24 24 24 24 120

Max Score 18 18 18 18 18 90

Your Score

Overall Final Exam Score:

2/10

 Question M1: Numbers (11 Points – 15 minutes)
a) In two's complement addition, how many of the 16 possible combinations of inputs to a 2-bit

adder result in overflow? Assume no carry in. (3 points)

b) We’re going to use a nibble (4 bits) to represent a floating point number as follows: SEEM (1
bit for Sign, 2 for Exponent, 1 for Mantissa), with bias=1. We’ll follow the IEEE standard to
reserve the smallest exponent for 0 & denorms (assume implicit exponent = 0), and the largest
for NANs and ± ∞. Fill in the table below: (8 points)

Description

Number that the floating
point notation on the right

represents (in Decimal)
Binary representation of the

floating point notation (in Hex)

Most negative # (that is not -∞)

Zero 0 0x0

Smallest positive #

Next-smallest positive #

Name: _______________________________ Login: cs61c-____

3/10

 Question M2: Memory & C (11 Points – 15 minutes)
a) How many bytes are used in the static area, stack and heap as a result of line 8? For the heap,

we’re asking for the requested amount. Assume the arguments are passed in registers, as
usual. (4 points)

0 struct foo {
1 int iarray[2];
2 char carray[4];
3 int* parray[2];
4 struct foo *next;
5 };
6
7 int main() {
8 struct foo *myFoo = (struct foo *) malloc (2 * sizeof(struct foo));
9 }

Static area Stack Heap

b) For a lab you wrote something similar to the following code: (s1,s2 are non-empty strings)

char *c1ptr;
char *c2ptr;
c1ptr = (char *) malloc (sizeof(char) * (strlen(s1) + 1));
c2ptr = (char *) malloc (sizeof(char) * (strlen(s2) + 1));

Your friend wants to combine those malloc calls into one:

char *c1ptr;
char *c2ptr;
c1ptr = (char *) malloc (sizeof(char) * (strlen(s1) + strlen(s2) + 2));
c2ptr = (char *) c1ptr + (sizeof(char) * (strlen(s1) + 1));

Assume there is no heap overhead used for the memory chunk header. Aside from your
friend’s poor style, in one sentence each provide a single advantage and a single disadvantage
to the approach. If there is none, write NONE. (2 points each)

Advantage of friend’s approach Disadvantage of friend’s approach

c) What is the veracity of the following memory management statements? Circle T or F: (1 pt each)

T F We discussed 3 schemes: K&R, slab allocator, and the buddy system. It’s
possible to write code to make any of these the best and any of these the worst
performer (i.e., one will never always dominate another, performance-wise).

T F Mark and sweep garbage collection does not work for circular data structures.

T F If you wrote code that had no calls to free and we only garbage collect when we
have to, reference counting will start collecting before copying.

4/10

 Question M3: C (11 Points – 15 minutes)
You are called upon to find the bugs and predict the output of the following program that was typed
into a PC word processor, like notepad or textedit, so we can’t trust the indenting. Specify actual or
potential errors (not warnings) at compile-time (e.g., syntax) or run-time (e.g., out-of-bounds access)
for lines (a)-(d). Concisely state your reasons (and suggest a fix) for all errors you find. Finally, give
the output of line (e), assuming the compiler and the system ignores all the errors it finds. (2 pts each)

struct dlist {
 int value;
 struct dlist *next;
};

int main() {
 struct dlist **p;
 int i,j;
 p = (struct dlist **) malloc (10 * sizeof(float *)); /* line (a) */
 for (i=0; i<10; i++)
 *(p+i) = (struct dlist *) malloc (20*sizeof(struct dlist)); /* line (b) */

 for (i=0;i<10; i++) {
 for(j=0; j<20; j++) {
 if(j<19)
 p[i][j].next = *(p[i][j+1]); /* line (c) */
 (*(p+i)+j+1)->value = i*j; /* line (d) */
 }
 }

 printf("%d",p[5][15].value); /* line (e) */

 return 0;
}

Line

Error? Circle “NO” or
“CT” (for compile-time) or

“RT” (for run-time)
If it is an error, briefly state the reason (and suggest a fix)

(a) NO CT RT

(b) NO CT RT

(c) NO CT RT

(d) NO CT RT

What is printed by line (e) (assume the compiler & system ignores all the errors it finds)? ______

Name: _______________________________ Login: cs61c-____

5/10

Question M4: MIPS (11 Points – 15 minutes)
The MIPS instruction set architecture (ISA) is going to be updated, and the Recording Industry
Association of America (RIAA) has asked the designers to add an anti-piracy feature. The new
instruction, riaa, will search for copyrighted material in your hard disk. In order to make space for the
new instruction, they decided to remove variable logical shifts from the language. Thus, sllv will
disappear from MIPS and its (R-type) opcode & function will be used for riaa. Recall the format:
sllv $rd, $rt, $rs which shifts the value in register rt to the left by the # of bits specified by
register rs and puts the result in destination register rd.

We wish to maintain MAL backward-compatibility, so we devise a clever solution in which we
consider sllv to be a MAL pseudoinstruction & translate it into a set of TAL instructions that do the
same thing.

The key idea is that we’re going to use self-modifying code! We’ll stuff the low-order few bits from the
contents of the rs register into the shamt field of a vanilla sll instruction (#11 below). We’re telling
you how to do it, and your job is to figure out where to put the temporary values (and a few other
details). Here are the sll and sllv instructions, and the field widths:

6 5 5 5 5 6
sll 0 rs rt rd shamt 0
sllv 0 rs rt rd 0 4

Thus, the single sllv instruction ($dst, $src and $shamtreg are abstractions for the actual registers)

 sllv $dst, $src, $shamtreg

…would translate to the following set of TAL instructions: (fill in the blanks, we’ve shown comments)

01 add , $0, $shamtreg # copy $shamtreg so we don’t alter it

02 andi , , # The shamt has a maximum size!

03 # shift the shamt to the right location

04 lui $at, shiftLby0(upper) # This lui and the following ori serve to…

05 ori , $at, shiftLby0(lower) # “point” to the shiftLby0 instruction

06 lw , 0() # reg now contains the shiftLby0 inst

07 # “paste” shamt into instruction

08 lui $at, shiftLby0(upper) # Again, lui and the following ori serve to…

09 ori , $at, shiftLby0(lower) # “point” to the shiftLby0 instruction

10 sw , 0() # Self-modify our code!

11 shiftLby0: sll $dst, $src, 0 # The shiftLby0 instruction

This concludes the Midterm-level questions. You’re 2/3rds of the way through!

6/10

 Question F1: Verilog and Logic (18 Points [6 each] – 24 minutes)
a) We’ve seen 6-input, 1-output logic gates like ANDs, ORs, NORs, NANDs, XORs, XNORs, etc.

Radio Shack needs to have one copy of ALL the possible 6-input, 1-output logic gates there
are possible (even stupid degenerate ones, like the one that ignores all the inputs and always
outputs 0), and each costs $1. How much does Radio Shack need to spend? Don’t write your
answer as an expression, work it out and write it in computer-ese, ala 1K$, 64M$, 2G$, etc.

b) Given the following sum-of-products expression for Foo, simplify this expression to a sum of
products of (at most) 3 two-variable terms (e.g., AB + CD + AD): What’s a good name for Foo?
 _ _ _ _ _ _ _ _ _
Foo = A*B*C + A*B*C + A*B*C + A*B*C

Foo = ________________________, and is better named “_____________________________”.

c) Given the following simplified sum-of-products expression for Bar, given A, B and C:
 _ _
Bar = A*B + A*C + B*C

Draw the circuit diagram for the Bar function. You are required to instantiate one 1-bit
multiplexor, and plug C into its select line (label its 0 and 1 inputs). You may only use basic
gates AND, OR & NOT. Full credit will only be given to solutions with a mux and 3 basic gates.

A B C Scratch space
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

?
?

A

B

C

Bar

 How
many?

Always 0

AND

Always 1

Name: _______________________________ Login: cs61c-____

7/10

 Question F2: Control and Datapath (18 Points – 24 Minutes)
Modify the following single cycle MIPS datapath diagram to accomodate a new instruction swai (store
word then auto-increment). The operation performs the regular sw operation, then post-increments the
rs register by 1. Your modification may use simple adders, mux chips, wires, and new control signals.
You may replace original labels where necessary. Recall the RTL for sw is:
Mem[R[rs] + SignExt[imm16]] = R[rt]; PC=PC+4, & that sw (and swai) has the following fields:

Opcode Rs Rt Immediate

a) Modify the picture above and list your changes below. You may not need all the boxes.
Please write them in “pipeline stage order” (i.e., changes affecting IF first, MEM next, etc)

(A)

(B)

(C)

(D)

(E)

(F)

b) We also wish to do the same thing with lw, namely create lwai. Will this work?
Circle YES or NO and argue your point in one sentence. (3 points)

 YES NO because

8/10

Question F3: Pipelining (18 points, 24 minutes)
Given the following MIPS code snippet (note that instruction #6 could be anything):

loop:
1 addi $t0, $t0, 4
2 lw $v0, 0($t0)
3 sw $v0, 20($t0)
4 lw $s0, 60($t0)
5 bne $s0, $0, loop
6 ##  The following instruction could be anything!

a) Detect hazards and insert no-ops to insure correct operation. Assume no
delayed branch, no forwarding units and no interlocked pipeline stages. Your
answer on the right should take the form of pair(s) of numbers: num@location –
indicating num no-ops should be placed at location. E.g., if you wanted to place
6 noops between lines 2 and 3 (i.e., location=2.5) and 8 noops between lines 5
and 6 (i.e., location=5.5), you would write: “6@2.5, 8@5.5”. (6 points)

Scratch space

b) Now, reorder/rewrite the program to maximize performance. Assume delayed branch and
forwarding units, but no interlocked pipeline stages. For unknown reasons, the first instruction
after the loop label must be the addi. Feel free to insert no-ops where needed. You should be
able to do it using 6 instructions per loop (easier, half credit) or only 5 (hard, full credit). (12 pts)

 ## Extra instructions before the loop if necessary

 ## Extra instructions before the loop if necessary

loop:
1 addi $t0, $t0, 4

2

3

4

5

6
 ##  The following instruction could be anything!

Name: _______________________________ Login: cs61c-____

9/10

Question F4: Caches & VM (18 points, 24 minutes)
This is for questions (a) and (b). The first-level data cache for a certain processor can cache 64 KB
of physical memory. Assume that the word size is 32 bits, the block size is 64 bytes, the size of the
physical memory is 2 GB, and the cache is 4-way set associative.

a) How many bits are needed for the following? Show your work on the right. (3 points)

 Tag Index Offset

b) For each of the following changes to the initial conditions above, indicate how these bits (i.e.,
the width of these fields) shift around. E.g., if a bit field stays the same, write “0“, if a bit field
increases by 5, write “+5”, if a bit field decreases by 1, write “-1”. (6 points)

Change Tag Index Offset
Double the cache size (from 64 KB to 128 KB)

Double the word size (from 32 bits to 64 bits)

Change the associativity to fully associative

c) A rich student who didn’t take CS61C decides to splurge and buy 4 GB of rocket-fast RAM for
their 32-bit MIPS system. They think to themselves: “Why should I turn on Virtual Memory?”.
What’s the strongest argument (one sentence max) for turning it on? (3 pts)

d) Suppose a computer has a 32-bit virtual address space, 64 MB physical memory and a 4 KB
page size. Based on this information, answer the following questions. Show your work. (6 pts)

How many virtual pages are there?

How many physical pages are there?

Assuming a one-level page-table design with each page table entry
consuming 1 word, what is the size of the page table, in bytes?

10/10

Question F5: Performance & I/O (18 points, 24 minutes)
a)

…and CPIi for each instruction i:

What should the CPI of Load/Store for machine A be so that A and B have the same execution
performance for this particular instruction mix? Show your work below and put your answer
directly in the table above. (5 points)

b) We want to send a message between two machines. We’re using Gigabit ethernet & the
message (including header & trailer) is 1,000 bytes long. Fill the table; show work! (5 pts)

What’s the network transmission time?

What (send+receive) overhead causes effective
bandwidth to drop to 10Mb/s? We want a single number.

c) Answer the following short-answer questions in at most three words (8 pts):

Some critics say RAID 0 is a misnomer! What do they say is a
more appropriate acronym for RAID 0? (Hint: what is it missing?)

In retrospect, the inventors of RAID bemoaned they should have
added a RAID 6 level. What would it have gracefully allowed
(that RAID 0-5 doesn’t)?

Which I/O device we discussed had the highest data rate?

Dave Patterson and his ROC team argue that we’ve been
focusing on performance almost to excess. What does he
believe should be the new benchmarks?

Machine ALU Load/Store Branch

20% 30% 50%

Machine Clock speed ALU Load/Store Branch
A 3 GHz 3 3

B 1 GHz 1 1 2

a) Given the following instruction mix:

