
CS 61C L15 Blocks (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #15: Combinational Logic Blocks

2005-07-14

Andy Carle
CS 61C L15 Blocks (2) A Carle, Summer 2005 © UCB

Outline

• CL Blocks

• Latches & Flip Flops – A Closer Look

CS 61C L15 Blocks (3) A Carle, Summer 2005 © UCB

Review (1/3)

• Use this table and techniques we
learned to transform from 1 to another

CS 61C L15 Blocks (4) A Carle, Summer 2005 © UCB

(2/3): Circuit & Algebraic Simplification

CS 61C L15 Blocks (5) A Carle, Summer 2005 © UCB

(3/3):Laws of Boolean Algebra

CS 61C L15 Blocks (6) A Carle, Summer 2005 © UCB

CL Blocks

• Let’s use our skills to build some CL
blocks:

• Multiplexer (mux)
• Adder
• ALU

CS 61C L15 Blocks (7) A Carle, Summer 2005 © UCB

Data Multiplexor (here 2-to-1, n-bit-wide)

“mux”

CS 61C L15 Blocks (8) A Carle, Summer 2005 © UCB

N instances of 1-bit-wide mux

CS 61C L15 Blocks (9) A Carle, Summer 2005 © UCB

How do we build a 1-bit-wide mux?

CS 61C L15 Blocks (10) A Carle, Summer 2005 © UCB

4-to-1 Multiplexor?

CS 61C L15 Blocks (11) A Carle, Summer 2005 © UCB

An Alternative Approach

Hierarchically!

CS 61C L15 Blocks (12) A Carle, Summer 2005 © UCB

Arithmetic and Logic Unit

• Most processors contain a logic block
called “Arithmetic/Logic Unit” (ALU)

• We’ll show you an easy one that does
ADD, SUB, bitwise AND, bitwise OR

CS 61C L15 Blocks (13) A Carle, Summer 2005 © UCB

Our simple ALU

CS 61C L15 Blocks (14) A Carle, Summer 2005 © UCB

Adder/Subtracter Design -- how?

• Truth-table, then
determine canonical
form, then minimize
and implement as
we’ve seen before

• Look at breaking the
problem down into
smaller pieces that
we can cascade or
hierarchically layer

CS 61C L15 Blocks (15) A Carle, Summer 2005 © UCB

N 1-bit adders ⇒ 1 N-bit adder

+ + +
b0

CS 61C L15 Blocks (16) A Carle, Summer 2005 © UCB

Adder/Subtracter – One-bit adder LSB…

CS 61C L15 Blocks (17) A Carle, Summer 2005 © UCB

Adder/Subtracter – One-bit adder (1/2)…

CS 61C L15 Blocks (18) A Carle, Summer 2005 © UCB

Adder/Subtracter – One-bit adder (2/2)…

CS 61C L15 Blocks (19) A Carle, Summer 2005 © UCB

What about overflow?

• Consider a 2-bit signed # & overflow:
•10 = -2 + -2 or -1
•11 = -1 + -2 only
•00 = 0 NOTHING!
•01 = 1 + 1 only

• Highest adder
• C1 = Carry-in = Cin, C2 = Carry-out = Cout

• No Cout or Cin ⇒ NO overflow!
• Cin, and Cout ⇒ NO overflow!
• Cin, but no Cout ⇒ A,B both > 0, overflow!
• Cout, but no Cin ⇒ A,B both < 0, overflow!

± #

What
op?

CS 61C L15 Blocks (20) A Carle, Summer 2005 © UCB

What about overflow?

• Consider a 2-bit signed # & overflow:
10 = -2 + -2 or -1
11 = -1 + -2 only
00 = 0 NOTHING!
01 = 1 + 1 only

• Overflows when…
• Cin, but no Cout ⇒ A,B both > 0, overflow!
• Cout, but no Cin ⇒ A,B both < 0, overflow!

± #

CS 61C L15 Blocks (21) A Carle, Summer 2005 © UCB

Extremely Clever Subtractor

CS 61C L15 Blocks (22) A Carle, Summer 2005 © UCB

Administrivia

• We’re now halfway through the
semester… yikes

• HW 45 Due Monday
• Proj2 coming…

• Logisim!

CS 61C L15 Blocks (23) A Carle, Summer 2005 © UCB

State Circuits Overview

• State circuits have feedback, e.g.

• Output is function of
inputs + fed-back signals.

• Feedback signals are the circuit's state.
• What aspects of this circuit might cause

complications?

lab 12
counter

in0
in1

out0
out1

Combi-
national

Logic

CS 61C L15 Blocks (24) A Carle, Summer 2005 © UCB

A simpler state circuit: two inverters

• When started up, it's internally stable.
• Provide an orgate for coordination:

• What's the result?

OR QS

0 1 0

0 1 0

0

0

0

1!

1

1 01 1

How do we set to 0?

CS 61C L15 Blocks (25) A Carle, Summer 2005 © UCB

0

Hold!

An R-S latch (cross-coupled NOR gates)
• S means “set” (to 1),
R means “reset” (to 0).

• Adding Q’ gives standard RS-latch:

OR ORS Q

R

Truth table
S R Q
0 0 hold (keep value)
0 1 0
1 0 1
1 1 unstable

A B NOR
0 0 1
0 1 0
1 0 0
1 1 0_

Q0 1 0

0

0

1

1 01 110

0

0 10 01

0 1
Hold!

0

CS 61C L15 Blocks (26) A Carle, Summer 2005 © UCB

An R-S latch (in detail)

Truth table
_

S R Q Q Q(t+∆t)
0 0 0 1 0 hold
0 0 1 0 1 hold
0 1 0 1 0 reset
0 1 1 0 0 reset
1 0 0 1 1 set
1 0 1 0 1 set
1 1 0 x x unstable
1 1 1 x x unstable

A B NOR
0 0 1
0 1 0
1 0 0
1 1 0

CS 61C L15 Blocks (27) A Carle, Summer 2005 © UCB

Controlling R-S latch with a clock

• Can't change R and S while clock is
active.

• Clocked latches are called flip-flops.

clock'

S'
Q'

Q
R' R

S

A B NOR
0 0 1
0 1 0
1 0 0
1 1 0

CS 61C L15 Blocks (28) A Carle, Summer 2005 © UCB

D flip-flop are what we really use
• Inputs C (clock) and D.
• When C is 1, latch open, output = D
(even if it changes, “transparent latch”)

• When C is 0, latch closed,
output = stored value.

C D AND

0 0 0

0 1 0

1 0 0

1 1 1

CS 61C L15 Blocks (29) A Carle, Summer 2005 © UCB

D flip-flop details
• We don’t like transparent latches
• We can build them so that the latch is
only open for an instant, on the rising
edge of a clock (as it goes from 0⇒1)

D
C

Q
Timing Diagram

CS 61C L15 Blocks (30) A Carle, Summer 2005 © UCB

Edge Detection

• This is a “rising-edge D Flip-Flop”
• When the CLK transitions from 0 to 1 (rising

edge) …
- Q D; Qbar not D

• All other times: Q Q; Qbar Qbar

A B O
0 0 1
0 1 1
1 0 1
1 1 1

CS 61C L15 Blocks (31) A Carle, Summer 2005 © UCB

Peer Instruction

A. Truth table for mux with 4 control
signals has 24 rows

B. We could cascade N 1-bit shifters
to make 1 N-bit shifter for sll, srl

C. If 1-bit adder delay is T, the N-bit
adder delay would also be T

CS 61C L15 Blocks (32) A Carle, Summer 2005 © UCB

“And In conclusion…”

• Use muxes to select among input
• S input bits selects 2S inputs
• Each input can be n-bits wide, indep of S

• Implement muxes hierarchically
• ALU can be implemented using a mux

• Coupled with basic block elements

• N-bit adder-subtractor done using N 1-
bit adders with XOR gates on input

• XOR serves as conditional inverter

