
CS61C L22 Caches III (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #21: Caches 3

2005-07-27

Andy Carle

CS61C L22 Caches III (2) A Carle, Summer 2005 © UCB

Review: Why We Use Caches
µProc
60%/yr.

DRAM
7%/yr.

1

10

100

1000
19

80

19
81

19
83

19
84

19
85

19
86

19
87

19
88 19

89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce “Moore’s Law”

• 1989 first Intel CPU with cache on chip

• 1998 Pentium III has two levels of cache on chip

CS61C L22 Caches III (3) A Carle, Summer 2005 © UCB

Review…
• Mechanism for transparent movement of
data among levels of a storage hierarchy

• set of address/value bindings
• address => index to set of candidates
• compare desired address with tag
• service hit or miss

- load new block and binding on miss

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
...

1 0 a b c d

000000000000000000 0000000001 1100
address: tag index offset

CS61C L22 Caches III (4) A Carle, Summer 2005 © UCB

Block Size Tradeoff (1/3)
• Benefits of Larger Block Size

• Spatial Locality: if we access a given
word, we’re likely to access other
nearby words soon

• Very applicable with Stored-Program
Concept: if we execute a given
instruction, it’s likely that we’ll execute
the next few as well

• Works nicely in sequential array
accesses too

CS61C L22 Caches III (5) A Carle, Summer 2005 © UCB

Block Size Tradeoff (2/3)
• Drawbacks of Larger Block Size

• Larger block size means larger miss penalty
- on a miss, takes longer time to load a new block from

next level

• If block size is too big relative to cache size,
then there are too few blocks

- Result: miss rate goes up

• In general, minimize
Average Memory Access Time (AMAT)

= Hit Time
+ Miss Penalty x Miss Rate

CS61C L22 Caches III (6) A Carle, Summer 2005 © UCB

Block Size Tradeoff (3/3)

• Hit Time = time to find and retrieve
data from current level cache

• Miss Penalty = average time to retrieve
data on a current level miss (includes
the possibility of misses on
successive levels of memory
hierarchy)

• Hit Rate = % of requests that are found
in current level cache

• Miss Rate = 1 - Hit Rate

CS61C L22 Caches III (7) A Carle, Summer 2005 © UCB

Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

CS61C L22 Caches III (8) A Carle, Summer 2005 © UCB

Types of Cache Misses (1/2)

• “Three Cs” Model of Misses
• 1st C: Compulsory Misses

• occur when a program is first started
• cache does not contain any of that
program’s data yet, so misses are bound
to occur

• can’t be avoided easily, so won’t focus
on these in this course

CS61C L22 Caches III (9) A Carle, Summer 2005 © UCB

Types of Cache Misses (2/2)

• 2nd C: Conflict Misses
• miss that occurs because two distinct memory

addresses map to the same cache location
• two blocks (which happen to map to the same

location) can keep overwriting each other
• big problem in direct-mapped caches
• how do we lessen the effect of these?

• Dealing with Conflict Misses
• Solution 1: Make the cache size bigger

- Fails at some point

• Solution 2: Multiple distinct blocks can fit in the
same cache Index?

CS61C L22 Caches III (10) A Carle, Summer 2005 © UCB

Fully Associative Cache (1/3)

• Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: non-existant

• What does this mean?
• no “rows”: any block can go anywhere in
the cache

• must compare with all tags in entire cache
to see if data is there

CS61C L22 Caches III (11) A Carle, Summer 2005 © UCB

Fully Associative Cache (2/3)

• Fully Associative Cache (e.g., 32 B block)
• compare tags in parallel

Byte Offset

:

Cache Data
B 0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

Cache Tag
=

=
=

=

=
:

CS61C L22 Caches III (12) A Carle, Summer 2005 © UCB

Fully Associative Cache (3/3)

• Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go
anywhere)

• Drawbacks of Fully Assoc Cache
• Need hardware comparator for every
single entry: if we have a 64KB of data in
cache with 4B entries, we need 16K
comparators: infeasible

CS61C L22 Caches III (13) A Carle, Summer 2005 © UCB

Third Type of Cache Miss

• Capacity Misses
• miss that occurs because the cache has
a limited size

• miss that would not occur if we increase
the size of the cache

• sketchy definition, so just get the general
idea

• This is the primary type of miss for
Fully Associative caches.

CS61C L22 Caches III (14) A Carle, Summer 2005 © UCB

N-Way Set Associative Cache (1/4)

• Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row”
(called a set in this case)

• So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must
compare with all tags in that set to find
our data

CS61C L22 Caches III (15) A Carle, Summer 2005 © UCB

N-Way Set Associative Cache (2/4)

• Summary:
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches
working in parallel: each has its own
valid bit and data

CS61C L22 Caches III (16) A Carle, Summer 2005 © UCB

N-Way Set Associative Cache (3/4)

• Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to
find the desired data within the block.

CS61C L22 Caches III (17) A Carle, Summer 2005 © UCB

N-Way Set Associative Cache (4/4)

• What’s so great about this?
• even a 2-way set assoc cache avoids a
lot of conflict misses

• hardware cost isn’t that bad: only need N
comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the
more general set associative design

CS61C L22 Caches III (18) A Carle, Summer 2005 © UCB

Associative Cache Example

• Recall this is how a
simple direct mapped
cache looked.

• This is also a 1-way set-
associative cache!

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

CS61C L22 Caches III (19) A Carle, Summer 2005 © UCB

Associative Cache Example

• Here’s a simple 2 way set
associative cache.

Memory
Memory
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache
Index

0
0
1
1

CS61C L22 Caches III (20) A Carle, Summer 2005 © UCB

Pre-Exam Exercise #3

We are now going to stop for ~5
minutes. During this time, your goal is
to (by yourself) come up with a
potential exam exercise covering the
topics of CPU Design & Pipelining.
Make it as much like a real exam
question as possible.

After this five minutes, you will explain
your question to a small group and
work through how you would go about
solving it. I’ll call on some random
samples for the full class.

CS61C L22 Caches III (21) A Carle, Summer 2005 © UCB

Administrivia

• Midterm 2:
• Friday, 11:00am – 2:00pm
• 306 Soda (HP Auditorium)
• Conflicts, DSP, &&|| terrified about the
drop deadline: Contact Andy ASAP

• HW7 Out Now, Due Sunday
• Project 3 Out Later This Week

CS61C L22 Caches III (22) A Carle, Summer 2005 © UCB

Block Replacement Policy (1/2)

• Direct-Mapped Cache: index completely
specifies position which position a
block can go in on a miss

• N-Way Set Assoc: index specifies a set,
but block can occupy any position
within the set on a miss

• Fully Associative: block can be written
into any position

• Question: if we have the choice, where
should we write an incoming block?

CS61C L22 Caches III (23) A Carle, Summer 2005 © UCB

Block Replacement Policy (2/2)

• If there are any locations with valid bit
off (empty), then usually write the new
block into the first one.

• If all possible locations already have a
valid block, we must pick a
replacement policy: rule by which we
determine which block gets “cached
out” on a miss.

CS61C L22 Caches III (24) A Carle, Summer 2005 © UCB

Block Replacement Policy: LRU

• LRU (Least Recently Used)
• Idea: cache out block which has been
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use
implies likely future use: in fact, this is a
very effective policy

• Con: with 2-way set assoc, easy to keep
track (one LRU bit); with 4-way or
greater, requires complicated hardware
and more time to keep track of this

CS61C L22 Caches III (25) A Carle, Summer 2005 © UCB

Block Replacement Example
• We have a 2-way set associative cache
with a four word total capacity and one
word blocks. We perform the
following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses
will there be for the LRU block
replacement policy?

CS61C L22 Caches III (26) A Carle, Summer 2005 © UCB

Block Replacement Example: LRU
• Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0

set 1

0 2lruset 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

0set 0

set 1

lrulru

0 2set 0

set 1

lru lru

set 0

set 1
0
1 lru

lru24lru

set 0

set 1
0 4
1 lru

lru lru

CS61C L22 Caches III (27) A Carle, Summer 2005 © UCB

Big Idea

• How to choose between associativity,
block size, replacement policy?

• Design against a performance model
• Minimize: Average Memory Access Time

= Hit Time
+ Miss Penalty x Miss Rate

• influenced by technology & program
behavior

• Note: Hit Time encompasses Hit Rate!!!

• Create the illusion of a memory that is
large, cheap, and fast - on average

CS61C L22 Caches III (28) A Carle, Summer 2005 © UCB

Example

• Assume
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

• Avg mem access time
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles

CS61C L22 Caches III (29) A Carle, Summer 2005 © UCB

Ways to reduce miss rate

• Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

• More places in the cache to put each
block of memory – associativity

• fully-associative
- any block any line

• N-way set associated
- N places for each block
- direct map: N=1

CS61C L22 Caches III (30) A Carle, Summer 2005 © UCB

Improving Miss Penalty
• When caches first became popular, Miss
Penalty ~ 10 processor clock cycles

• Slightly more modern:
2400 MHz Processor (0.4 ns per clock
cycle) and 80 ns to go to DRAM
⇒ 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

CS61C L22 Caches III (31) A Carle, Summer 2005 © UCB

Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

L2 hit
time L2 Miss Rate

L2 Miss Penalty

CS61C L22 Caches III (32) A Carle, Summer 2005 © UCB

Typical Scale

• L1
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

• L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

• L2 miss rate is fraction of L1 misses
that also miss in L2

• why so high?

CS61C L22 Caches III (33) A Carle, Summer 2005 © UCB

Example: with L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15% (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

• L1 miss penalty = 5 + 0.15 * 200 = 35
• Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles

CS61C L22 Caches III (34) A Carle, Summer 2005 © UCB

Example: without L2 cache

• Assume
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

• Avg mem access time = 1 + 0.05 x 200
= 11 cycles

• 4x faster with L2 cache! (2.75 vs. 11)

CS61C L22 Caches III (35) A Carle, Summer 2005 © UCB

What to do on a write hit?

• Write-through
• update the word in cache block and
corresponding word in memory

• Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating
that memory needs to be updated when
block is replaced

⇒ OS flushes cache before I/O…

• Performance trade-offs?

CS61C L22 Caches III (36) A Carle, Summer 2005 © UCB

An Actual CPU – Pentium M

CS61C L22 Caches III (37) A Carle, Summer 2005 © UCB

Peer Instructions

1. In the last 10 years, the gap between the access time
of DRAMs & the cycle time of processors has
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

CS61C L22 Caches III (38) A Carle, Summer 2005 © UCB

Peer Instructions Answer

1. In the last 10 years, the gap between the access time
of DRAMs & the cycle time of processors has
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

1. That was was one of the motivation for caches in the
first place -- that the memory gap is big and widening.

2. Sure, consider the caches from the previous slides
with the following workload: 0, 2, 0, 4, 2
2-way: 0m, 2m, 0h, 4m, 2m; DM: 0m, 2m, 0h, 4m, 2h

3. Larger block size ⇒ lower miss rate, true until a
certain point, and then the ping-pong effect takes over

CS61C L22 Caches III (39) A Carle, Summer 2005 © UCB

And in Conclusion…

• Cache design choices:
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• 3rd level cache?
• Write through v. write back?

• Use performance model to pick
between choices, depending on
programs, technology, budget, ...

