
CS61C L22 Caches III (1) A Carle, Summer 2005 © UCB

inst.eecs.berkeley.edu/~cs61c/su05
CS61C : Machine Structures

Lecture #21: Caches 3

2005-07-27

Andy Carle



CS61C L22 Caches III (2) A Carle, Summer 2005 © UCB

Review: Why We Use Caches
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• 1989 first Intel CPU with cache on chip

• 1998 Pentium III has two levels of cache on chip



CS61C L22 Caches III (3) A Carle, Summer 2005 © UCB

Review…
• Mechanism for transparent movement of 
data among levels of a storage hierarchy

• set of address/value bindings
• address => index to set of candidates
• compare desired address with tag
• service hit or miss

- load new block and binding on miss

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3
...

1 0 a b c d

000000000000000000 0000000001 1100
address: tag index                  offset
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Block Size Tradeoff (1/3)
• Benefits of Larger Block Size

• Spatial Locality: if we access a given 
word, we’re likely to access other 
nearby words soon

• Very applicable with Stored-Program 
Concept: if we execute a given 
instruction, it’s likely that we’ll execute 
the next few as well

• Works nicely in sequential array 
accesses too
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Block Size Tradeoff (2/3)
• Drawbacks of Larger Block Size

• Larger block size means larger miss penalty
- on a miss, takes longer time to load a new block from 

next level

• If block size is too big relative to cache size, 
then there are too few blocks

- Result: miss rate goes up

• In general, minimize 
Average Memory Access Time (AMAT)

= Hit Time 
+  Miss Penalty x Miss Rate
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Block Size Tradeoff (3/3)

• Hit Time = time to find and retrieve 
data from current level cache

• Miss Penalty = average time to retrieve 
data on a current level miss (includes 
the possibility of misses on 
successive levels of memory 
hierarchy)

• Hit Rate = % of requests that are found 
in current level cache

• Miss Rate = 1 - Hit Rate
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Block Size Tradeoff Conclusions
Miss
Penalty

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Exploits Spatial Locality

Fewer blocks: 
compromises
temporal locality

Miss
Rate

Block Size
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Types of Cache Misses (1/2)

• “Three Cs” Model of Misses
• 1st C: Compulsory Misses

• occur when a program is first started
• cache does not contain any of that 
program’s data yet, so misses are bound 
to occur

• can’t be avoided easily, so won’t focus 
on these in this course
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Types of Cache Misses (2/2)

• 2nd C: Conflict Misses
• miss that occurs because two distinct memory 

addresses map to the same cache location
• two blocks (which happen to map to the same 

location) can keep overwriting each other
• big problem in direct-mapped caches
• how do we lessen the effect of these?

• Dealing with Conflict Misses
• Solution 1: Make the cache size bigger

- Fails at some point 

• Solution 2: Multiple distinct blocks can fit in the 
same cache Index?
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Fully Associative Cache (1/3)

• Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: non-existant

• What does this mean?
• no “rows”: any block can go anywhere in 
the cache

• must compare with all tags in entire cache 
to see if data is there



CS61C L22 Caches III (11) A Carle, Summer 2005 © UCB

Fully Associative Cache (2/3)

• Fully Associative Cache (e.g., 32 B block)
• compare tags in parallel

Byte Offset

:

Cache Data
B  0

0431

:

Cache Tag (27 bits long)

Valid

:

B 1B 31 :

Cache Tag
=

=
=

=

=
:
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Fully Associative Cache (3/3)

• Benefit of Fully Assoc Cache
• No Conflict Misses (since data can go 
anywhere)

• Drawbacks of Fully Assoc Cache
• Need hardware comparator for every 
single entry: if we have a 64KB of data in 
cache with 4B entries, we need 16K 
comparators: infeasible
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Third Type of Cache Miss

• Capacity Misses
• miss that occurs because the cache has 
a limited size

• miss that would not occur if we increase 
the size of the cache

• sketchy definition, so just get the general 
idea

• This is the primary type of miss for 
Fully Associative caches.
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N-Way Set Associative Cache (1/4)

• Memory address fields:
• Tag: same as before
• Offset: same as before
• Index: points us to the correct “row” 
(called a set in this case)

• So what’s the difference?
• each set contains multiple blocks
• once we’ve found correct set, must 
compare with all tags in that set to find 
our data
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N-Way Set Associative Cache (2/4)

• Summary:
• cache is direct-mapped w/respect to sets
• each set is fully associative
• basically N direct-mapped caches 
working in parallel: each has its own 
valid bit and data
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N-Way Set Associative Cache (3/4)

• Given memory address:
• Find correct set using Index value.
• Compare Tag with all Tag values in the 
determined set.

• If a match occurs, hit!, otherwise a miss.
• Finally, use the offset field as usual to 
find the desired data within the block.
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N-Way Set Associative Cache (4/4)

• What’s so great about this?
• even a 2-way set assoc cache avoids a 
lot of conflict misses

• hardware cost isn’t that bad: only need N 
comparators

• In fact, for a cache with M blocks,
• it’s Direct-Mapped if it’s 1-way set assoc
• it’s Fully Assoc if it’s M-way set assoc
• so these two are just special cases of the 
more general set associative design



CS61C L22 Caches III (18) A Carle, Summer 2005 © UCB

Associative Cache Example

• Recall this is how a 
simple direct mapped 
cache looked.

• This is also a 1-way set-
associative cache!

Memory
Memory 
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4  Byte Direct 
Mapped Cache

Cache 
Index

0
1
2
3
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Associative Cache Example

• Here’s a simple 2 way set 
associative cache.

Memory
Memory 
Address

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Cache 
Index

0
0
1
1
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Pre-Exam Exercise #3

We are now going to stop for ~5 
minutes.  During this time, your goal is 
to (by yourself) come up with a 
potential exam exercise covering the 
topics of CPU Design & Pipelining.  
Make it as much like a real exam 
question as possible.

After this five minutes, you will explain 
your question to a small group and 
work through how you would go about 
solving it.  I’ll call on some random 
samples for the full class.
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Administrivia

• Midterm 2:
• Friday, 11:00am – 2:00pm
• 306 Soda (HP Auditorium)
• Conflicts, DSP, &&|| terrified about the 
drop deadline:  Contact Andy ASAP

• HW7 Out Now, Due Sunday
• Project 3 Out Later This Week
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Block Replacement Policy (1/2)

• Direct-Mapped Cache: index completely 
specifies position which position a 
block can go in on a miss

• N-Way Set Assoc: index specifies a set, 
but block can occupy any position 
within the set on a miss

• Fully Associative: block can be written 
into any position

• Question: if we have the choice, where 
should we write an incoming block?
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Block Replacement Policy (2/2)

• If there are any locations with valid bit 
off (empty), then usually write the new 
block into the first one.

• If all possible locations already have a 
valid block, we must pick a 
replacement policy: rule by which we 
determine which block gets “cached 
out” on a miss.
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Block Replacement Policy: LRU

• LRU (Least Recently Used)
• Idea: cache out block which has been 
accessed (read or write) least recently

• Pro: temporal locality ⇒ recent past use 
implies likely future use: in fact, this is a 
very effective policy

• Con: with 2-way set assoc, easy to keep 
track (one LRU bit); with 4-way or 
greater, requires complicated hardware 
and more time to keep track of this
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Block Replacement Example
• We have a 2-way set associative cache 
with a four word total capacity and one 
word blocks.  We perform the 
following word accesses (ignore bytes 
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4
How many hits and how many misses 
will there be for the LRU block 
replacement policy?
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Block Replacement Example: LRU
• Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

1 lru

loc 0 loc 1
set 0

set 1

0 2lruset 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

0set 0

set 1

lrulru

0 2set 0

set 1

lru lru

set 0

set 1
0
1 lru

lru24lru

set 0

set 1
0 4
1 lru

lru lru
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Big Idea

• How to choose between associativity, 
block size, replacement policy?

• Design against a performance model
• Minimize: Average Memory Access Time

= Hit Time 
+  Miss Penalty x Miss Rate

• influenced by technology & program 
behavior

• Note: Hit Time encompasses Hit Rate!!!

• Create the illusion of a memory that is 
large, cheap, and fast - on average
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Example

• Assume 
• Hit Time = 1 cycle
• Miss rate = 5%
• Miss penalty = 20 cycles
• Calculate AMAT…

• Avg mem access time 
= 1 + 0.05 x 20
= 1 + 1 cycles
= 2 cycles



CS61C L22 Caches III (29) A Carle, Summer 2005 © UCB

Ways to reduce miss rate

• Larger cache
• limited by cost and technology
• hit time of first level cache < cycle time

• More places in the cache to put each 
block of memory – associativity

• fully-associative
- any block any line

• N-way set associated
- N places for each block
- direct map: N=1 
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Improving Miss Penalty
• When caches first became popular, Miss 
Penalty ~ 10 processor clock cycles

• Slightly more modern: 
2400 MHz Processor (0.4 ns per clock 
cycle) and 80 ns to go to DRAM 
⇒ 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and 
the processor cache: Second Level (L2) Cache
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Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit 
time

L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * 
(L2 Hit Time +  L2 Miss Rate * L2 Miss Penalty)

L2 hit 
time L2 Miss Rate

L2 Miss Penalty
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Typical Scale

• L1 
• size: tens of KB
• hit time: complete in one clock cycle
• miss rates: 1-5%

• L2:
• size: hundreds of KB
• hit time: few clock cycles
• miss rates: 10-20%

• L2 miss rate is fraction of L1 misses 
that also miss in L2

• why so high?
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Example: with L2 cache

• Assume 
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L2 Hit Time = 5 cycles
• L2 Miss rate = 15%  (% L1 misses that miss)
• L2 Miss Penalty = 200 cycles

• L1 miss penalty = 5 + 0.15 * 200 = 35
• Avg mem access time = 1 + 0.05 x 35

= 2.75 cycles
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Example: without L2 cache

• Assume 
• L1 Hit Time = 1 cycle
• L1 Miss rate = 5%
• L1 Miss Penalty = 200 cycles

• Avg mem access time = 1 + 0.05 x 200
= 11 cycles

• 4x faster with L2 cache! (2.75 vs. 11)
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What to do on a write hit?

• Write-through
• update the word in cache block and 
corresponding word in memory

• Write-back
• update word in cache block
• allow memory word to be “stale”
⇒ add ‘dirty’ bit to each block indicating 
that memory needs to be updated when 
block is replaced

⇒ OS flushes cache before I/O…

• Performance trade-offs?
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An Actual CPU – Pentium M
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Peer Instructions

1. In the last 10 years, the gap between the access time 
of DRAMs & the cycle time of processors has 
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed 
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate
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Peer Instructions Answer

1. In the last 10 years, the gap between the access time 
of DRAMs & the cycle time of processors has 
decreased. (I.e., is closing)

2. A 2-way set-associative cache can be outperformed 
by a direct-mapped cache.

3. Larger block size ⇒ lower miss rate

1. That was was one of the motivation for caches in the 
first place -- that the memory gap is big and widening.

2. Sure, consider the caches from the previous slides 
with the following workload: 0, 2, 0, 4, 2 
2-way: 0m, 2m, 0h, 4m, 2m; DM: 0m, 2m, 0h, 4m, 2h

3. Larger block size ⇒ lower miss rate, true until a 
certain point, and then the ping-pong effect takes over
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And in Conclusion…

• Cache design choices:
• size of cache: speed v. capacity
• direct-mapped v. associative
• for N-way set assoc: choice of N
• block replacement policy
• 2nd level cache?
• 3rd level cache?
• Write through v. write back?

• Use performance model to pick 
between choices, depending on 
programs, technology, budget, ...


