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Scientific Computing

° Traditional Science
1) Produce theories and designs on “paper”
2) Perform experiments or build systems
• Has become difficult, expensive, slow, and 

dangerous for fields on the leading edge

° Computational Science
• Use ultra-high performance computers to 

simulate the system we’re interested in

° Acknowledgement
• Many of the concepts and some of the content 

of this lecture were drawn from Prof. Jim 
Demmel’s CS 267 lecture slides which can be 
found at http://www.cs.berkeley.edu/~demmel/cs267_Spr05/
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Example Applications

° Science
• Global climate modeling
• Biology: genomics; protein folding; drug design
• Astrophysical modeling
• Computational Chemistry
• Computational Material Sciences and Nanosciences

° Engineering
• Semiconductor design
• Earthquake and structural modeling
• Computation fluid dynamics (airplane design)
• Combustion (engine design)
• Crash simulation

° Business
• Financial and economic modeling
• Transaction processing, web services and search engines

° Defense
• Nuclear weapons -- test by simulations
• Cryptography
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Performance Requirements

° Terminology
• Flop – Floating point operation
• Flops/second – standard metric for expressing 

the computing power of a system

° Global Climate Modeling
• Divide the world into a grid (e.g. 10 km spacing)
• Solve fluid dynamics equations to determine 

what the air has done at that point every minute
- Requires about 100 Flops per grid point per minute

• This is an extremely simplified view of how the 
atmosphere works, to be maximally effective 
you need to simulate many additional systems 
on a much finer grid
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Performance Requirements (2)

° Computational Requirements
• To keep up with real time (i.e. simulate one 

minute per wall clock minute):  
8 Gflops/sec

• Weather Prediction (7 days in 24 hours): 
56 Gflops/sec

• Climate Prediction (50 years in 30 days): 
4.8 Tflops/sec

• Climate Prediction Experimentation (50 years in 
12 hours): 288 Tflops/sec

° Perspective
• Pentium 4 1.4GHz, 1GB RAM, 4x100MHz FSB

- ~320 Mflops/sec, effective
- Climate Prediction would take ~1233 years

Reference:http://www.tc.cornell.edu/~lifka/Papers/SC2001.pdf
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What Can We Do?

°Wait
• Moore’s law tells us things are getting 
better; why not stall for the moment?

°Parallel Computing!
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Prohibitive Costs

° Rock’s Law
• The cost of building a semiconductor chip 

fabrication plant that is capable of producing 
chips in line with Moore’s law doubles every four 
years
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How fast can a serial computer be?

° Consider a 1 Tflop/sec sequential machine:
• Data must travel some distance, r, to get 
from memory to CPU

• To get 1 data element per cycle, this 
means 1012 times per second at the 
speed of light, c = 3x108 m/s.  Thus 
r < c/1012 = 0.3 mm

- So all of the data we want to process must 
be stored within 0.3 mm of the CPU

° Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm area:
• Each word occupies about 3 square 
Angstroms, the size of a very small atom

• Maybe someday, but it most certainly 
isn’t going to involve transistors as we 
know them
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What is Parallel Computing?

°Dividing a task among multiple 
processors to arrive at a unified 
(meaningful) solution

• For today, we will focus on systems with 
many processors executing identical 
code

°How is this different from 
Multiprogramming (which we’ve 
touched on some in this course)?

°How is this different from Distributed 
Computing?
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Recent History

° Parallel Computing as a field exploded in popularity in the mid-1990s
° This resulted in an “arms race” between universities, research labs, 

and governments to have the fastest supercomputer in the world

Source:  
top500.org
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Current Champions

BlueGene/L – IBM/DOE
Rochester, United States
32768 Processors, 70.72 Tflops/sec
0.7 GHz PowerPC 440

Columbia – NASA/Ames
Mountain View, United States
10160 Processors, 51.87 Tflops/sec
1.5 GHz SGI Altix

Earth Simulator – Earth Simulator Ctr.
Yokohama, Japan
5120 Processors, 35.86 Tflops/sec
SX6 Vector

Data Source:  top500.org
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Administrivia

° Proj 4 Due Friday
° HW8 (Optional) Due Friday
° Final Exam on Friday

• Yeah, sure, you can have 3 one-sided cheat sheets
- But I really don’t think they’ll help you all that much

° Course Survey in lab today



CS61C L28 Parallel Computing (13) A Carle, Summer 2005 © UCB

Parallel Programming

°Processes and Synchronization
°Processor Layout
°Other Challenges

• Locality
• Finding parallelism
• Parallel Overhead
• Load Balance
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Processes

°We need a mechanism to intelligently 
split the execution of a program

°Fork:
int main(…){ 
int pid = fork();
if (pid == 0) printf(“I am the child.”);
if (pid != 0) printf(“I am the parent.”);
return 0;

}

°What will this print?
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Processes (2)

°We don’t know! Two potential 
orderings:

• I am the child.I am the parent.
• I am the parent.I am the child.
• This situation is a simple race condition.
This type of problem can get far more 
complicated…

°Modern parallel compilers and runtime 
environments hide the details of 
actually calling fork() and moving the 
processes to individual processors, 
but the complexity of synchronization
remains
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Synchronization

°How do processors communicate with 
each other?

°How do processors know when to 
communicate with each other?

°How do processors know which other 
processor has the information they 
need?

°When you are done computing, which 
processor, or processors, have the 
answer?
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Synchronization (2)

°Some of the logistical complexity of 
these operations is reduced by 
standard communication frameworks

• Message Passing Interface (MPI)

°Sorting out the issue of who holds 
what data can be made easier with the 
use of explicitly parallel languages

• Unified Parallel C (UPC)
• Titanium (Parallel Java Variant)

°Even with these tools, much of the 
skill and challenge of parallel 
programming is in resolving these 
problems
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Processor Layout

Generalized View

P P P P

Interconnection Network

M M MM

Memory

M = Memory local to one processor 

Memory = Memory local to all other processors
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Processor Layout (2)
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Processor Layout (3)

°Clusters of SMPs
• n of the N total processors share one 
memory

• Simple shared memory communication 
within one cluster of n processors

• Explicit network-type calls to 
communicate from one group of n to 
another

°Understanding the processor layout 
that your application will be running 
on is crucial!
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Parallel Locality
° We now have to expand our view of the memory hierarchy to include 

remote machines
° Remote memory behaves like a very fast network

• Bandwidth vs. Latency becomes important

Regs

Memory

Remote Memory

Local and Remote Disk

Instr. Operands

Blocks

Large Data Blocks

Cache
Blocks



CS61C L28 Parallel Computing (22) A Carle, Summer 2005 © UCB

Amdahl’s Law

°Applications can almost never be 
completely parallelized

°Let s be the fraction of work done 
sequentially, so (1-s) is fraction 
parallelizable, and P = number of 
processors

Speedup(P) = Time(1)/Time(P)
<= 1/(s + (1-s)/P) 
<= 1/s

°Even if the parallel portion of your 
application speeds up perfectly, your 
performance may be limited by the 
sequential portion
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Parallel Overhead

° Given enough parallel work, these are the 
biggest barriers to getting desired speedup

° Parallelism overheads include:
• cost of starting a thread or process
• cost of communicating shared data
• cost of synchronizing
• extra (redundant) computation

° Each of these can be in the range of 
milliseconds  (many millions of flops) on 
some systems

° Tradeoff: Algorithm needs sufficiently large 
units of work to run fast in parallel (I.e. large 
granularity), but not so large that there is 
not enough parallel work
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Load Balance

° Load imbalance is the time that some processors in 
the system are idle due to

• insufficient parallelism (during that phase)
• unequal size tasks

° Examples of the latter
• adapting to “interesting parts of a domain”
• tree-structured computations 
• fundamentally unstructured problems 

° Algorithms need to carefully balance load
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Summary

°Parallel Computing is a multi-billion 
dollar industry driven by interesting 
and useful scientific computing 
applications

° It is extremely unlikely that sequential 
computing will ever again catch up 
with the processing power of parallel 
systems

°Programming parallel systems can be 
extremely challenging, but is built 
upon many of the concepts you’ve 
learned this semester in 61c


