
CS 70 Discrete Mathematics and Probability Theory

Fall 2011 Rao Rough Outline Lecture 1

The reader shold be aware that thes notes have been subject to minimal if any editing and should not
be distributed.

This course is about formal analysis in the context of discrete math and probability and its applications in
computer science.

Today, we highlight some of the applications and hint at the mathematical ideas that we will use to derive
these applications.

Secret sharing, coding theory.

Consider the problem of shaing (parts of) a secret number with three people, where any two can figure out
the number, and any one person knows nothing about the number.

Let me describe a secret sharing scheme using a sequence of examples.

• Secret: 2. Shares: 2, 4,6.

• Secret: 3. Shares: 1000, 1003, 1006.

• Secret: 5. Shares: 41, 46,51.

This is an old “guess the pattern” problem, where the patterns consist of an arithmetic sequence: add the
secret number every time.

Now, guess the secret given the following shares.

• Shares: 2, *,6. What is the secret?

• Shares: *, 8, 12. What is the secret?

• Shares: *,8,*. What is the secret?

From even the first example above, where the secret is 2, it becomes clear that the order of the shares matter.
That is, the shares correspond to share 1, share 2, and share 3. With this, it is easy to see that the second
example’s secret is 4.

In the last example, with this scheme, one cannot determine the secret at all.

How can we generalize this scheme to share the secret among more people, have the minimum sized set of
knowing people be larger?

Viewing the shares as a set of ordered pairs, E.g;,(1,2);(2,4);(3,6), and associate a graph or function
between share number and share value, one sees that the secret is encoded as the slope of a line. We have
the very familiar notion thatpoints determine a line. Moreover, one point tells is nothing about the slope
of a line.

CS 70, Fall 2011, Rough Outline Lecture 1 1



So, to generalize to having more shares, one can simply choose more points on the line. Any two suffice to
reconstruct the line.

How about needing a larger group to collaborate to reconstruct the secret? Here, we will use the simply use
functions which are higher degree polynomials. For example, three points uniquely determine a parabola,
or anyk points determine a degreek−1 polynomial. We can encode the secret as one of the coefficients of
the the polynomial.

Later in this course, we will see how to do this computation using integers and small numbers.

This scheme is actually broadly used in communication. For example, if we have ak packet message that
we want to send over a lossy communication channel, can we send n packets where anyk of them allow
us to reconstruct the original message. Here, each “sent” packet will correspond to a share of the original
message.

A more challenging problem is a “noisy” channel, a channel that changes the contents of a packet. Here you
wish to send ak packet message usingn packets, and reconstruct the message of anyg packets remain good.
Here, we will needg to be larger thank, but can still do very well. Again, the constructions are based on
properties of polynomials! Indeed, properties that were developed in the California 10th grade curriculum
for real numbers. Here, we will use analagous properties over finite fields, as that is what computers do.

Cyrptography: Public Key encryption.

Since time immemorial: share codebook... secret key. Both ends need to share a codebook. A message
is sent by encoding the message using the “codebook” and thendecoding the message using the same
“codebook”.

Diffie and Hellman devised a public key system consisting of apublic key, secret key pair, a method to
encode a message using the public key, and a method to decode the message using the corresponding secret
key. Rivest, Shamir, and Adleman later devised a public key scheme based on modular arithmetic. This is
the basis of modern cryptography in practice.

In particular, a greatly simplified depiction of what happens when Bob wishes to send his credit card number
to Amazon.

Amazon: I am Amazon; my public key isK = (N,e)!

This public key is known to the world (in particular to Bob’s browser and everyone else’s browser.)

Bob: y = E(x = ”5422132217861111.” ,N,e) = xe modN

Here, we use modular arithmetic. When we sayx modN we mean something akin to the remainder ofx
modN, i.e., 13 mod 7. (In fact, we mean that the whole world only consists of 0, ...,N−1. AndN +1

modN is simply another representation of 1 modN. So, the modN simply means we are in this world.
The modN will be at the end of an equation as above. )

Now, an evil eavesdropper (Eve) is snooping on the router.

Eve(il): See’s y.. hopefully can’t figure outx even though she knowsN ande.

A tiny bit of intuition of how this might work. Let’s consideran example where the encryption and
decryption are done with one prime, 7. Here, we have.

Eve: for what x, isx5 = 5 mod 7?

CS 70, Fall 2011, Rough Outline Lecture 1 2



In modular arithmetic, it is not clear how to take roots. For real numbers (or rationals) one can do some
kind of binary search, but other than trying all of them it is not clear how to take the 5th root of something

modp.

But I know (x5)5 mod 7 = 1 by,

Fermat’s (Little) Theorem:ap−1 = 1 modp for prime p and fora non-multiple ofp.

Now, with this theorem, we have that

(x5)5 = x25 = x24x = (x6)4x mod 7

Now, by Fermats theorem, we have thatx6 = 1 mod 7, and we have that(x5)5 = 1 mod 7.

(This takes a bit of belief that basic rules of arithmetic; e.g., (xa)b = xab modp, apply to modular
arithmetic.)

Thus, this mathematical fact called Fermat’s Little Theorem gives us a somewhat counterintuitive
decryption method. Unfortunately, Eve can as easily figure out the decryption method as Bob whenN is a
prime. But, the analagous decryption method whenN is the product of two unknown primes along with the

analagous theorem (Euler’s Theorem) remains the state of the deployed technology.

Probability...

We will cover a fair bit of probability in this class. While primarily we will cover discrete probability we
will touch on continuous probability and the connections should give you a better grasp of both.

Let’s take a brief look at some examples which you will be ableto formally reason about after this course.

You are offered a million dollars for winning 2consecutive games of 3 1-on-1 games of Jeapardy against
Watson (IBM’s supercomputer which happens to be very good) and me (I am bad).

You get to choose from the following two orders.

Would you play? Watson-me-Watson or me-Watson-me.

Again, you are likely to lose agaist Watson where you are likely to win against me. You might think it
better to play me twice, but the consecutive condition interferes with this intution. This and many other
situations typically require us to carefully and formally reason to ensure we are acting correctly. We will

provide the formalism and experience for doing so in this course.

Another big topic is dealing with understanding the behavior of large numbers of events.

For example, there are a 100 mutual funds, which trade once a day for a year. One fund makes the right
choice 60% of the time, should you pay high fees to go with the fund manager?

This type of problem has a bit of modelling involved, what is the definition of “right choice”, etc, and a bit
of understanding of the computation of quantities like variance and their use in understanding performance.

While some of you, in AP statistics, perhaps, could do this using various tables, we will start from the
basics and derive concepts used to analyse these situations.

Self reference and undeciability..

Here, we consider the following sentence.

CS 70, Fall 2011, Rough Outline Lecture 1 3



This statement is false.

This statement is neither true nor false.

This is possibly one of the great “disasters” of ..uh... a mathematics? philosophy? life? This kind of
argument leads to problems in forming foundations of mathematics; for example, consider the set that of
sets that don’t contain themselves. Does the set contain itself? The self reference here is the reference to

itself.

For computer scientists, this reasoning results in a fundamental limit on whether programs completely
"understand" other programs?

An example, of course, here is the metacircular evaluator that one writes in CS61A

For example, can we write a program, call itHALT that checks for another program,P, whether it is an
infinite loop when run on itself?

Consider, a program programFLIP-HALT takes a programP and halts if P runs forever on P else it runs
forever. This program can be written ifHALT can.

What doesFLIP do onFLIP?

Can the programHAlT exist?

(In class, a suggestion was made that recursion is the “self-reference” concept. It is not really the problem.
The problem has more to do with the fact that the input to a program can be (a representation of) the

program itself.)

CS 70, Fall 2011, Rough Outline Lecture 1 4


