CS 70 Discrete Mathematics and Pro]oa]oility Theory
Fall 2011 Rao Rough Outline Lecture 1

Thereader shold be aware that thes notes have been subject to minimal if any editing and should not
be distributed.

This course is about formal analysis in the context of discneath and probability and its applications in
computer science.

Today, we highlight some of the applications and hint at tleghmmatical ideas that we will use to derive
these applications.

Secret Sharing, Coding theory.
Consider the problem of shaing (parts of) a secret numbértiwee people, where any two can figure out
the number, and any one person knows nothing about the number

Let me describe a secret sharing scheme using a sequencagbles.

e Secret: 2. Shares: 2, 4,6.
» Secret: 3. Shares: 1000, 1003, 1006.
» Secret: 5. Shares: 41, 46,51.

This is an old “guess the pattern” problem, where the patteomsist of an arithmetic sequence: add the
secret number every time.

Now, guess the secret given the following shares.

e Shares: 2, *,6. What is the secret?
e Shares: *, 8, 12. What is the secret?

e Shares: *,8,*. What is the secret?

From even the first example above, where the secret is 2,dhbes clear that the order of the shares matter.
That is, the shares correspond to share 1, share 2, and shéfigh3this, it is easy to see that the second
example’s secret is 4.

In the last example, with this scheme, one cannot deterrhimedcret at all.

How can we generalize this scheme to share the secret amamegpeaple, have the minimum sized set of
knowing people be larger?

Viewing the shares as a set of ordered pairs, E32);(2,4);(3,6), and associate a graph or function
between share number and share value, one sees that theisetcireded as the slope of a line. We have
the very familiar notion thapoints determine a line. Moreover, one point tells is nothing about the slope
of aline.

[EEY

CS 70, Fall 2011, Rough Outline Lecture 1



So, to generalize to having more shares, one can simply elrooge points on the line. Any two suffice to
reconstruct the line.

How about needing a larger group to collaborate to recocisthe secret? Here, we will use the simply use
functions which are higher degree polynomials. For exantplee points uniquely determine a parabola,
or anyk points determine a degrée- 1 polynomial. We can encode the secret as one of the coeffiadén
the the polynomial.

Later in this course, we will see how to do this computatioimgigntegers and small numbers.

This scheme is actually broadly used in communication. kanmgle, if we have & packet message that
we want to send over a lossy communication channel, can werspackets where ank of them allow
us to reconstruct the original message. Here, each “senKepavill correspond to a share of the original
message.

A more challenging problem is a “noisy” channel, a channat tthanges the contents of a packet. Here you
wish to send & packet message usimgackets, and reconstruct the message ofgrgckets remain good.
Here, we will needy to be larger thark, but can still do very well. Again, the constructions aredmhen
properties of polynomials! Indeed, properties that wenetigped in the California 10th grade curriculum
for real numbers. Here, we will use analagous properties fivige fields, as that is what computers do.

Cyrptography: Public Key encryption.

Since time immemorial: share codebook... secret key. Botls @eed to share a codebook. A message
is sent by encoding the message using the “codebook” anddéeoding the message using the same
“codebook”.

Diffie and Hellman devised a public key system consisting pliblic key, secret key pair, a method to
encode a message using the public key, and a method to déwodessage using the corresponding secret
key. Rivest, Shamir, and Adleman later devised a public kigme based on modular arithmetic. This is
the basis of modern cryptography in practice.

In particular, a greatly simplified depiction of what happ&hen Bob wishes to send his credit card number
to Amazon.

Amazon: | am Amazon; my public key I§ = (N, e)!

This public key is known to the world (in particular to Bob'slwser and everyone else’s browser.)

Bob:y = E(x = "5422132217861111,N,€) = x* modN

Here, we use modular arithmetic. When we gaynodN we mean something akin to the remaindex of
modN, i.e., 13 mod 7. (In fact, we mean that the whole world onlysists of ...,N — 1. AndN +1
modN is simply another representation of 1 méddSo, the modN simply means we are in this world.
The modN will be at the end of an equation as above. )

Now, an evil eavesdropper (Eve) is snooping on the router.

Eve(il): See’s y.. hopefully can't figure onteven though she knows ande.

A tiny bit of intuition of how this might work. Let’s considean example where the encryption and
decryption are done with one prime, 7. Here, we have.

Eve: for what x, is® =5 mod 77?

CS 70, Fall 2011, Rough Outline Lecture 1 2



In modular arithmetic, it is not clear how to take roots. Feslmumbers (or rationals) one can do some
kind of binary search, but other than trying all of them it & nlear how to take the 5th root of something
mod p.

But I know (x°)° mod 7 = 1 by,

Fermat's (Little) TheoremaP~1 =1 modp for prime p and fora non-multiple ofp.
Now, with this theorem, we have that

(x°)° = x%° = x?4x = (x®)*x mod 7

Now, by Fermats theorem, we have th&t=1 mod 7, and we have th&t°)> =1 mod 7.

(This takes a bit of belief that basic rules of arithmetig. gx®)® = x® modp, apply to modular
arithmetic.)

Thus, this mathematical fact called Fermat's Little Thaeoigives us a somewhat counterintuitive
decryption method. Unfortunately, Eve can as easily figuttetee decryption method as Bob whins a
prime. But, the analagous decryption method wNes the product of two unknown primes along with the

analagous theorem (Euler's Theorem) remains the stateafghloyed technology.

Pro]oa]oility. ..

We will cover a fair bit of probability in this class. While ipnarily we will cover discrete probability we
will touch on continuous probability and the connectionsisti give you a better grasp of both.

Let’s take a brief look at some examples which you will be dableormally reason about after this course.

You are offered a million dollars for winning @nsecutive games of 3 1-on-1 games of Jeapardy against
Watson (IBM’s supercomputer which happens to be very gond)mae (I am bad).

You get to choose from the following two orders.
Would you play? Watson-me-Watson or me-Watson-me.

Again, you are likely to lose agaist Watson where you ardylike win against me. You might think it
better to play me twice, but the consecutive condition feteis with this intution. This and many other
situations typically require us to carefully and formalgason to ensure we are acting correctly. We will
provide the formalism and experience for doing so in thisseu

Another big topic is dealing with understanding the behagidarge numbers of events.

For example, there are a 100 mutual funds, which trade oneg foda year. One fund makes the right
choice 60% of the time, should you pay high fees to go with timelfmanager?

This type of problem has a bit of modelling involved, whattis tiefinition of “right choice”, etc, and a bit
of understanding of the computation of quantities like aaace and their use in understanding performance.
While some of you, in AP statistics, perhaps, could do thisgigarious tables, we will start from the
basics and derive concepts used to analyse these situations

Self reference and undeciability..

Here, we consider the following sentence.

CS 70, Fall 2011, Rough Outline Lecture 1



This statement is false.

This statement is neither true nor false.

This is possibly one of the great “disasters” of ..uh... aheatatics? philosophy? life? This kind of
argument leads to problems in forming foundations of mattars; for example, consider the set that of
sets that don't contain themselves. Does the set contailfi?itShe self reference here is the reference to

itself.

For computer scientists, this reasoning results in a fureddiaah limit on whether programs completely
"understand" other programs?

An example, of course, here is the metacircular evaluasirahe writes in CS61A

For example, can we write a program, caHIALT that checks for another prograf, whether it is an
infinite loop when run on itself?

Consider, a program prografL | P-HALT takes a prograr® and halts if P runs forever on P else it runs
forever. This program can be writtenHFALT can.

What does~LIP do onFLIP?
Can the prograntAlT exist?

(In class, a suggestion was made that recursion is the rsielfence” concept. It is not really the problem.
The problem has more to do with the fact that the input to agarmmgcan be (a representation of) the
program itself.)

CS 70, Fall 2011, Rough Outline Lecture 1 4



