
Administration
Midterm 1 is not early after all.
We don’t think 3 weeks is enough material to merit a midterm.



CS70: Lecture 3. Outline.

1. Proofs

2. Simple

3. Direct

4. by Contrapositive

5. by Cases

6. by Contradiction



Simple theorem..
Theorem: P =⇒ (P ∨ Q).
Proof:

I P is true.

P ∨ Q is true

“ ’anything’ =⇒ true” is true

so X =⇒ (P ∨ Q) is true for all X ,

and in particular, P =⇒ (P ∨ Q) is true

I P is false.

“false =⇒ ’anything’ ”, is true

so “P =⇒ ’anything’ ” is true.

in particular P =⇒ (P ∨ Q) is true.

More detailed but the “same” as truth table proof in some
sense.
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Proof by truth table.
Theorem: P =⇒ (P ∨ Q).

Proof:

P Q P ∨ Q

T T T
T F T
F T T
F F F

Look only at appropriate rows. Where theorem condition is true.

When P is true since we are proving an implication.
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An aside from piazza question/answer.
Theorem: ¬(P ⇐⇒ Q) =⇒ (P =⇒ ¬Q).
Proof:

P Q ¬(P ⇐⇒ Q) P =⇒ ¬Q
T T F F
T F T T
F T T T
F F F T

Look only at appropriate rows. Where theorem condition is T.
When ¬(P ⇐⇒ Q) is true then P =⇒ ¬Q is true.
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Existential statement.
How to prove existential statement?

Give an example. (Sometimes called ”proof by example.”)

Theorem: ∃x ∈ N.x = x2

Pf: 0 = 02 = 0
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Universal Statement.

(∀x ∈ N)(P(x))

Prove for every instance!!

Could take a long time...

Consider an instance P(x), prove it for x without making any
assumptions about x .
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Universal Quantification Proof: example.

Theorem: For every n ∈ N, n3 − n is divisible by 3. (3|n3 − n ).

Proof:

n3 − n = (n − 1)(n)(n + 1)

for any n.

One of (n − 1),n, n + 1 is divisible by three.

Right hand side is divisible by 3, and so is the left hand side.

Did not use anything about n, so proof was valid for any n.

Direct Proof: P =⇒ Q. Assume P prove Q.
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If and only if..
Theorem: For every n in N, n is even ⇐⇒ n2 is even.

P = ’n2 is even.’

Q = ’n is even’

For P ⇐⇒ Q, prove P =⇒ Q and Q =⇒ P.

Lemma: For every n in N, n is even =⇒ n2 is even. (Q =⇒ P)

n is even =⇒ n = 2k for some k.

n2 = (2k)2 = 4k2 = 2 ∗ (2k2) = 2 ∗ l for some natural number l .

So n2 is even!!
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Other direction of implication...

Lemma: For every n in N, n2 is even =⇒ n is even. (P =⇒ Q)

n2 is even, n2 = 2k, ...
√

2k even?

Proof by contrapositive: (P =⇒ Q) ≡ (¬Q =⇒ ¬P)

P = ’n2 is even.’ ........... ¬P = ’n2 is odd’

Q = ’n is even’ ........... ¬Q = ’n is odd’

Prove ¬Q =⇒ ¬P: n is odd =⇒ n2 is odd.

n = 2k + 1

n2 = 4k2 + 4k + 1 = 2(2k + k) + 1.

n2 = 2l + 1 where l is a natural number..

... and n2 is odd!

¬Q =⇒ ¬P so P =⇒ Q and theorem holds.

Theorem: For every n in N, n is even ⇐⇒ n2 is even.
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Proof by contradiction:idea
Assume opposite of what we are trying to prove. Show that it
leads to an impossible situation. So our assumption must have
been false.



Proof by cases.
Theorem: x5 − x + 1 = 0 has no solution in the rationals.

Lemma: If x is a solution to x5 − x + 1 = 0 and x = a/b for
a, b ∈ Z , then both a and b are even.

Proof: Assume a solution of the form a/b.(a

b

)5
− a/b + 1 = 0

multiply by b5,
a5 − ab4 + b5 = 0

Case 1: a odd, b odd odd - odd +odd = even. Not possible.

Case 2: a even, b odd even - even +odd = even. Not possible.

Case 3: a odd, b even odd - even +even = even. Not possible.

Case 4: a even, b even even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.
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Proof by contradiction.
Theorem: x5 − x + 1 = 0 has no solution in the rationals.

Proof:

Suppose for contradiction.

I There is a solution x = a/b with a ∈ Z and b ∈ N and
a, b 6= 0. (a = 0 would be x = 0 which is not a solution.)

I May be many, so choose b to be minimal.

I No common factors for a and b.

I Both a and b cannot be even.

I Contradicts lemma: “a and b must be even.”

So assumption that there is a rational solution is false and the
theorem holds.
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Proof by contradiction:form
Theorem: P.

¬P =⇒ P1 · · · =⇒ R

¬P =⇒ P1 · · · =⇒ ¬R

¬P is false.

P is true.

Recap: x5 − x + 1 = 0 has no rational solutions.

P – the non existence of rational solution

R – a and b are even.

Lemma: Any rational solution implies a and b are even.

¬P =⇒ · · ·R
There is a rational solution where a and b are not both even.

¬P =⇒ · · · ¬R
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Proof by contradiction: example
Theorem: There are infinitely many primes.

Proof:

I Assume finitely many primes: p1, . . . , pk .

I Consider
q = p1 × p2 × · · · pk + 1

.

I q cannot be one of the primes as it is larger than any pi .

I q has prime divisor p (”p > 1” = R ) which is one of pi .

I p divides both x = p1, . . . , pk and q, and x − q is 1,

I so p ≤ 1. (Contradicts R.)

The original assumption that “the theorem is false” is false,
thus the theorem is true.
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Product of first k primes..
Did we prove?

I “The product of the first k primes plus 1 is prime.”

I No.

I The chain of reasoning started with a false statement.

Consider example..

I 2× 3× 5× 7× 11× 13 + 1 = 200031 = 59× 509

I There is a prime in between 13 and q = 200031 that divides q.

I Proof assumed no primes in between.
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Discussion
Proof by contradiction can sometimes be dangerous.

Derive false statements.

Perhaps from a false step in the middle instead of from the
original false assumption.

In a direct proof, nonsense is a warning sign.

In a contradiction proof, it is the nature of the beast.
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Why use contradiction?
Could we do a direct proof for primes?

One way: make a formula to generate another prime from finite set
of primes.

(E.g., product of first k primes plus 1?)

Euclid proved that there were infinitely many primes (see above)
but did not provide a formula.

Lazy guy?

Two millennia later, we still don’t know a formula to generate yet
“another” prime.
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Stopped here in class: 8/31/2011.
Some of it was due to various good questions. If you weren’t in
class, come next time!
We may cover the next couple of slides in class. That remains to
be seen.
Cheers, Satish Rao
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(i.e., 2).

One of the cases is true so theorem holds.
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Be careful.
Theorem: 3 = 4

Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3
and the other by 4 and you get 4 = 3.

You can’t assume what you want to prove.

Theorem: 3 = 4

Proof:

If a = b, then ax = bx .

So, for x = 0, 3x = 4x , which implies 3 = 4.

P =⇒ Q does not mean Q =⇒ P.

See notes...
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Extra slides



¡



Definitions..

Axiom A proposition that we assume is true without proof
EX: Peano axioms for natural numbers

Theorem A proposition that we can prove to be true.

Conjecture A proposition that we think is true but don’t know how
to prove.


