Section 1

- **1.** Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Law.
- **2.** Which of the following statements is/are true? (In the following, Q(n) is the statement "*n* is divisible by 2." As usual, \mathbb{N} denotes the set of natural numbers.)
 - (a) $\exists k \in \mathbb{N}, Q(k) \land Q(k+1).$
 - (b) $\forall k \in \mathbb{N}, Q(k) \implies Q(k^2).$
 - (c) $\exists x \in \mathbb{N}, \neg (\exists y \in \mathbb{N}, y < x).$
- **3.** Rewrite the following statements in propositional logic. (Use \mathbb{N} to denote the set of natural numbers and \mathbb{Z} to denote the set of integers. Also write P(n) for the statement "*n* is odd".)
 - (a) For all natural numbers n, 2n is even.
 - (b) For all natural numbers n, n is odd if n^2 is odd.
 - (c) There are no integer solutions to the equation $x^2 y^2 = 10$.
- 4. Which of the following implications is/are true?
 - (a) $\forall x \forall y \ P(x, y)$ implies $\forall y \forall x \ P(x, y)$.
 - (b) $\exists x \exists y \ P(x, y)$ implies $\exists y \exists x \ P(x, y)$.
 - (c) $\forall x \exists y \ P(x, y)$ implies $\exists y \forall x \ P(x, y)$.
 - (d) $\exists x \forall y \ P(x, y)$ implies $\forall y \exists x \ P(x, y)$.

Also, for the implication in part (c), what is its converse? And its contrapositive?

5. Complete the following expression so that it states that: "There is one and only one natural number n for which the proposition formula P(n) holds."

 $(\exists n \in \mathbb{N}) \dots$