Section 1

1. Use truth tables to show that $\neg(A \vee B) \equiv \neg A \wedge \neg B$ and $\neg(A \wedge B) \equiv \neg A \vee \neg B$. These two equivalences are known as DeMorgan's Law.
2. Which of the following statements is/are true? (In the following, $Q(n)$ is the statement " n is divisible by 2 ." As usual, \mathbb{N} denotes the set of natural numbers.)
(a) $\exists k \in \mathbb{N}, Q(k) \wedge Q(k+1)$.
(b) $\forall k \in \mathbb{N}, Q(k) \Longrightarrow Q\left(k^{2}\right)$.
(c) $\exists x \in \mathbb{N}, \neg(\exists y \in \mathbb{N}, y<x)$.
3. Rewrite the following statements in propositional logic. (Use \mathbb{N} to denote the set of natural numbers and \mathbb{Z} to denote the set of integers. Also write $P(n)$ for the statement " n is odd".)
(a) For all natural numbers $n, 2 n$ is even.
(b) For all natural numbers n, n is odd if n^{2} is odd.
(c) There are no integer solutions to the equation $x^{2}-y^{2}=10$.
4. Which of the following implications is/are true?
(a) $\forall x \forall y P(x, y)$ implies $\forall y \forall x P(x, y)$.
(b) $\exists x \exists y P(x, y)$ implies $\exists y \exists x P(x, y)$.
(c) $\forall x \exists y P(x, y)$ implies $\exists y \forall x P(x, y)$.
(d) $\exists x \forall y P(x, y)$ implies $\forall y \exists x P(x, y)$.

Also, for the implication in part (c), what is its converse? And its contrapositive?
5. Complete the following expression so that it states that: "There is one and only one natural number n for which the proposition formula $P(n)$ holds."

$$
(\exists n \in \mathbb{N}) \ldots
$$

