Section 4

1. In the RSA encryption algorithm let $p=3, q=5$ and $e=7$.
(a) What is the public key?
(b) What is the private key?
(c) Encrypt the message $x=3$.
(d) Decrypt the message $y=10$.
2. Suppose n is a positive natural number whose prime factorization is: $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}}$, where $p_{1} \ldots p_{k}$ are natural, distinct prime numbers, and $a_{1}, \ldots a_{n}$ are positive natural numbers. Use induction to show that the number of divisors of n is $\left(1+a_{1}\right)\left(1+a_{2}\right) \cdots\left(1+a_{k}\right)$. Example: $n=12=2^{2} \times 3$ has exactly $3 \times 2=6$ divisors.
3. Let $a \in \mathbb{N}$ be a natural number, and define the sign of a to be the quantity formed by alternatively adding and subtracting the digits of a. For example, if $a=39250$ then the sign of a is $3-9+2-5+0=-9$. Prove that a is divisible by 11 if and only if its sign is divisible by 11 .
4. SBNs Books were, until 2007, identified by an International Standard Book Number (ISBN), a 10 -digit code $x_{1} x_{2} \ldots x_{10}$ assigned by the publisher. These 10 digits consist of blocks identifying the language, the publisher, the number assigned to the book by its publishing company, and finally, the last digit is a "check digit" that is either a digit or the letter X (used to represent the number 10). This check digit is selected so that $\sum_{i=1}^{10} i \cdot x_{i} \equiv 0(\bmod 11)$.
(a) The ISBN for the original 1970 Anarchist's Cookbook starts with "0-9623032-0-". The dashes in ISBN are meaningless - they're only inserted for readability. What is the last digit?
(b) Wikipedia says that you can get the check digit by computing $\sum_{i=1}^{9} i \cdot x_{i} \bmod 11$. Show that Wikipedia's description is equivalent to the above description.
(c) Prove that changing any single digit of the ISBN will render the ISBN invalid. That is, the check digit allows you to detect a single-digit substitution error.
(d) Can you switch any two digits in an ISBN and still have it be a valid ISBN? (E.g., could both 012345678 X and 015342678 X both be valid ISBNs?
(e) Canada decides to change its ISBN system by doing the check digit computation modulo 12 rather than modulo 11 (if the check digit needs to be " 11 ", they'll use " Y "). That is, the digits now have to satisfy $\sum_{i=1}^{10} i \cdot x_{i} \equiv 0(\bmod 11)$. Shall we blame Canada for reducing the error-detecting capabilities of the check digit?

5. [Sharing a Password]

A certain course has one professor and three GSIs on its staff. The staff want to password-protect the software that lets them alter student midterm grades. To prevent malicious tinkering, they don't want to allow anyone to access the system alone. Instead, they would like it so that the system can be entered only with the consent of either (1) the professor and any one GSI, or (2) all three GSIs together. Suppose the password is some message m, and let p be a prime.
Consider the following scheme:
Generate two numbers s_{1} and s_{2} at random and choose s_{3} such that $s_{1}+s_{2}+s_{3} \equiv m(\bmod p)$. Let $t_{1}=s_{2}+s_{3}, t_{2}=s_{1}+s_{3}$, and $t_{3}=s_{1}+s_{2}$. Give s_{1} to the first GSI, s_{2} to the second GSI, and s_{3} to the third GSI. Finally, give t_{1}, t_{2} and t_{3} to the professor. If the three GSIs want to compute the password, they can pool their information to compute $s_{1}+s_{2}+s_{3} \equiv m(\bmod p)$. If a GSI and the professor want to comptue the password, they can compute $s_{i}+t_{i} \equiv m(\bmod p)$.
(a) Is this a valid solution? Why or why not?
(b) Modify the above scheme to make it more secure.

