
CS 70 Discrete Mathematics and Probability Theory
Summer 2012 Filiba HW 8

Due Tuesday, Aug 7, 4:59pm
You may work in groups of up to 4 people (no larger!). Please read the group collaboration policies on the
course website at http://inst.cs.berkeley.edu/~cs70/su12/ before beginning group work.
You must write up the solution set entirely on your own. You must never look at any other students’ solutions
(not even a draft), nor share your own solutions (not even a draft).

Please put your answer to each problem on its own sheet of paper. Label each sheet of paper with your
name, student ID, section number (101, 102, or 103), the assignment number, the problem number, and
“CS70–Summer 2012.” Turn in your homework in the boxes labeled “CS70” on the 2nd floor of Soda Hall.
Submit each problem separately in its appropriate box (i.e., your answer to question i goes into CS 70 drop
box i). Failure to follow these instructions may cost you points, or cause you to receive no credit at all.

Note that this homework is due at 4:59pm on Tuesday.

1. (10 pts.) The Basics: Joint Distributions.
Consider figure 1 in Note 18 in the course reader.

(a) What are the distributions of X and Y ?

(b) What is Pr[X = 1∩Y = 1]?

(c) What is Pr[X = 1|Y = 1]?

(d) What is the distribution of the random variable Y conditioned on Y = 1?

(e) What is the distribution of the random variable X conditioned on Y = 1?

(f) Say X represents one of three variants of a gene, and Y = 0 represents the event that an individual is
healthy, Y = 1 has a type 1 variant of a disease, and Y = 2 has a type 2 variant of the disease.
What is the probability that an individual is sick? Given that X is not 1, what is the probability that the
individual is sick?

2. (10 pts.) The myth of fingerprints
A crime has been committed. The police discover that the criminal has left DNA behind, and they compare
the DNA fingerprint against a police database containing DNA fingerprints for 20 million people. Assume
that the probability that two DNA fingerprints (falsely) match by chance is 1 in 10 million. Assume that,
if the crime was committed by someone whose DNA fingerprint is on file in the police database, then it’s
certain that this will turn up as a match when the police compare the crime-scene evidence to their database;
the only question is whether there will be any false matches.

Let D denote the event that the criminal’s DNA is in the database; D denotes the event that the criminal’s
DNA is not in the database. Assume that it is well-documented that half of all such crimes are committed
by criminals in the database, i.e., assume that Pr[D] = Pr[D] = 1/2. Let the random variable X denote the
number of matches that are found when the police run the crime-scene sample against the DNA database.

(a) Calculate Pr[X = 1|D].
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(b) Calculate Pr[X = 1|D].

(c) Calculate Pr[D|X = 1]. Evaluate the expression you get and compute this probability to at least two
digits of precision.

As it happens, the police find exactly one match, and promptly prosecute the corresponding individual. You
are appointed a member of the jury, and the DNA match is the only evidence that the police present. During
the trial, an expert witness testifies that the probability that two DNA fingerprints (falsely) match by chance
is 1 in 10 million. In his summary statement, the prosecutor tells the jury that this means that the probability
that the defendant is innocent is 1 in 10 million.

(d) What is wrong with the prosecutor’s reasoning in the summary statement?

(e) Do you think the defendant should be convicted? Why or why not?

3. (15 pts.) Mendelian inheritance
Let’s look at an application of the theory we’ve been developing, to classical inheritance of genes, as initially
described by Gregor Mendel based upon his experiments with pea plants.

Here’s a review of Mendel’s model. Mendel determined that the height of each pea plant is determined by
the genes it has. In his model, each pea plant has two genes that together determine the plant’s height; each
gene can be one of two possibilities, either h or H. The H gene is dominant, and if H is present in either of
the plant’s two genes, the plant will be tall. The h gene is recessive, and if both genes are h, the plant will
be short.

We can see that there are four possibilities for the combinations of the plant’s two genes: HH, Hh, hH,
hh. The combinations Hh and hH are indistinguishable, so the standard convention is to write both of these
cases as simply Hh. Thus, there are three possibilities for the plant’s genotype (the portion of its genetic
code related to height): HH, Hh, and hh.

The height of each plant is determined by its genotype. Plants with a genotype of HH or Hh will be tall;
plants with the genotype hh will be short.

A new pea plant can be formed by crossing two existing pea plants: its “father” and its “mother”. The “child”
plant inherits one gene from its father (a gene chosen uniformly at random from its father’s two genes) and
one gene from its mother (randomly chosen from the mother’s two genes). For each parent, it’s random
which gene the child inherits from that parent, and both possibilities are equally likely. For example, if the
father has genotype HH and the mother has genotype Hh, the child might have genotype HH or Hh, each
with probability 1/2. As another example, if the father has genotype Hh and the mother has genotype Hh,
the child’s genotype could be HH, Hh, or hh; these occur with probabilities 1/4, 1/2, and 1/4, respectively.
(Here Hh occurs with probability 2/4, since it can be obtained either by inheriting a H from the father and
h from the mother, or by inheriting a h from the father and H from the mother.)

Mendel deduced that, in a large population of pea plants, the genotypes will be HH, Hh, and hh, in propor-
tions 1/4, 1/2, and 1/4, respectively. Thus, 3/4 of pea plants (the ones with genotype HH or Hh) will be
tall, and 1/4 will be short. Of the tall pea plants, 1/3 will have genotype HH and 2/3 will have genotype
Hh.

Here’s the thing. Given a pea plant, you can directly measure whether it is tall or short. However, there is
no easy way to determine its genotype directly. Of course, based upon the pea plant’s height, you can draw
some inferences about its potential genotypes, but there is no way to observe genotypes directly (without
sophisticated technology that was not available to Mendel). In this problem, we’re going to develop a
procedure for probabilistically inferring the genotype of a pea plant, by crossing it with other plants and
measuring the heights of its children.
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So suppose we have a particular pea plant, let’s call it Penelope; we want to infer Penelope’s genotype. Let
the random variable X denote Penelope’s genotype. X is hidden: we cannot observe X directly. Based upon
the overall frequency of genotypes in the population at large, before we observe anything, our best estimate
for X can be summarized by the prior distribution: Pr[X =HH] = 1/4, Pr[X =Hh] = 2/4, Pr[X = hh] = 1/4.
Now we’re going to repeatedly pick another plant at random from a large population of pea plants, cross
that other plant with Penelope, and look at the height of the child. Let the random variable Yi be an indicator
r.v. for the event that the ith child obtained in this way is tall. In other words, Yi = 1 if Penelope’s ith child
is tall, and Yi = 0 if Penelope’s ith child is short. Assume that the genotypes of all the other plants crossed
with Penelope are independent.

(a) Calculate the conditional probabilities

Pr[Y1 = 1|X = HH] Pr[Y1 = 0|X = HH]

Pr[Y1 = 1|X = Hh] Pr[Y1 = 0|X = Hh]

Pr[Y1 = 1|X = hh] Pr[Y1 = 0|X = hh]

(b) What is the probability that Penelope’s first child is tall? In other words, calculate Pr[Y1 = 1].

(c) Suppose we measure and find that Penelope’s first child is tall. What is the posterior distribution for
X , given this observation? In other words, calculate the conditional probabilities

Pr[X = HH|Y1 = 1], Pr[X = Hh|Y1 = 1], and Pr[X = hh|Y1 = 1].

(d) In part (c), you determined a method for updating the prior distribution to the posterior distribution
after observing the event that Penelope’s first child is tall, under the assumption that the prior distribu-
tion is (1/4,2/4,1/4). Now let’s generalize this to an arbitrary prior distribution. Suppose the prior
distribution is Pr[X = HH] = p, Pr[X = Hh] = q, Pr[X = hh] = 1− p−q. With this prior, calculate the
posterior distribution

(Pr[X = HH|Y1 = 1], Pr[X = Hh|Y1 = 1], Pr[X = hh|Y1 = 1]),

as a function of p and q. (This provides a general update rule for updating your estimate of the
distribution of X , after observing a tall child.)
Note: The new prior distribution (p,q,1− p− q) in parts (d) and (e) only applies to Penelope. The
remaining plants (from which we draw the plant to cross with Penelope) still have the distribution
(1/4,1/2,1/4).

(e) In part (d), you developed an update rule for the case where the child is observed to be tall. Now
develop a general update rule for the case where the child is observed to be short. Suppose the prior
distribution is Pr[X = HH] = p, Pr[X = Hh] = q, Pr[X = hh] = 1− p−q. With this prior, calculate the
posterior distribution

(Pr[X = HH|Y1 = 0], Pr[X = Hh|Y1 = 0], Pr[X = hh|Y1 = 0]),

as a function of p and q.

(f) Suppose that, after measuring, we find Penelope’s first two children are both tall. Calculate the con-
ditional distribution for X , given that Penelope’s first two children are both tall: i.e., calculate the
posterior distribution

(Pr[X = HH|Y1 = 1,Y2 = 1], Pr[X = Hh|Y1 = 1,Y2 = 1], Pr[X = hh|Y1 = 1,Y2 = 1]).

Plot this distribution.
Hint: Apply the update rule from part (d) to the distribution you calculated in part (c).
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4. (15 pts.) Likelihood ratios
Gamblers tend to express their chances of winning a bet in terms of odds: for instance, a bet that’s one to
six is one where we’re six times as likely to lose as to win. In contrast, a mathematician would probably
describe the same bet by saying that the probability of winning is 1/7 and the probability of losing is 6/7.
Of course, the two are equivalent: given the odds, you can compute the probabilities of winning and losing;
giving the probabilities, you can compute the odds. In this class, we’ve used probabilities, because they tend
to be easier to work with. But here we will see a case where odds can aid calculations. In particular, we will
work with a ratio of probabilities, which can be viewed as a description of the odds.

Suppose we have an inference problem with a hidden r.v. X and observable r.v.’s Y1, . . . ,Yn that are condi-
tionally independent given X . Suppose we have two hypotheses regarding the value of X , which we will
represent as two events H0 and H1. (For instance, maybe H0 is the event X = 5 and H1 is the event X = 6.)

In any probability space, we can compute the ratio of the probability of H0 over the probability of H1. For
example, the probability ratio associated with the prior distribution is R0 =

Pr[H0]
Pr[H1]

. The probability ratio asso-

ciated with the posterior after observing the event Y1 = a1 is R1 =
Pr[H0|Y1=a1]
Pr[H1|Y1=a1]

. And, after observing the events

Y1 = a1, Y2 = a2, . . . , Yk = ak, the probability ratio associated with the posterior is Rk =
Pr[H0|Y1=a1,...,Yk=ak]
Pr[H1|Y1=a1,...,Yk=ak]

. If
the probability ratio is greater than 1, that means that hypothesis H0 is more likely than hypothesis H1; and
a probability ratio less than 1 means that H0 is less likely than H1. So, the probability ratio helps us decide
between the two hypotheses.

In this problem, you will develop methods for calculating with ratios and then apply them to several infer-
ence problems.

(a) Suppose we know the prior distribution on X is Pr[X = 0] = 2
7 , Pr[X = 1] = 5

7 , and H0 is the hypothesis
X = 0 and H1 the hypothesis that X = 1. Find the probability ratio R0 of the prior.

(b) Suppose we know the probability ratio of the prior is given by R0 = 4, where H0 is the hypothesis
X = 0 and H1 the hypothesis that X = 1 and where we know that X can only take on the values 0 or 1.
Find the prior distribution of X . In other words, compute Pr[X = 0] and Pr[X = 1].

(c) Suppose we observe the event Y1 = a1. Show that

R1 = R0×L1,

where L1 =
Pr[Y1=a1|H0]
Pr[Y1=a1|H1]

. (L1 is called a likelihood ratio.) In other words, show that

Pr[H0|Y1 = a1]

Pr[H1|Y1 = a1]
=

Pr[H0]

Pr[H1]
× Pr[Y1 = a1|H0]

Pr[Y1 = a1|H1]
.

(d) Suppose we observe the sequence of k events Y1 = a1, Y2 = a2, . . . , Yk = ak. Show that

Rk = R0×L1×L2×·· ·×Lk,

where Li =
Pr[Yi=ai|H0]
Pr[Yi=ai|H1]

. (L1×·· ·×Lk is another likelihood ratio.) In other words, show that

Pr[H0|Y1 = a1, . . . ,Yk = ak]

Pr[H1|Y1 = a1, . . . ,Yk = ak]
=

Pr[H0]

Pr[H1]
×

k

∏
i=1

Pr[Yi = ai|H0]

Pr[Yi = ai|H1]
.

Hint: Use conditional independence.
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(e) Let’s apply the likelihood-ratio framework to the stripped-down version of the multi-armed bandit
problem, as described in Lecture Note 17. Suppose p1 = 2/3, p2 = 1/2, H0 is the event that X = 1,
and H1 is the event that X = 2. We’re going to compare the likelihood that the biased coin was selected
(H0) to the likelihood that the fair coin was selected (H1), given the outcomes from a sequence of k
coin tosses using the coin that was selected. Assume a uniform prior on X . Calculate the following
values:

R0 =
Pr[H0]

Pr[H1]
= ?

Pr[Yi = H|H0] = ?

Pr[Yi = T |H0] = ?

Pr[Yi = H|H1] = ?

Pr[Yi = T |H1] = ?

Li(H) =
Pr[Yi = H|H0]

Pr[Yi = H|H1]
= ?

Li(T ) =
Pr[Yi = T |H0]

Pr[Yi = T |H1]
= ?

If after observing the first k coin tosses, we find that h of them were Heads and k−h were Tails, find
a formula for Rk in terms of R0, Li(H), and Li(T ). Next, answer the following question by plugging
into your formula: if we observe 11 Heads and 7 Tails, is it more likely that we are dealing with the
2/3-biased coin (H0) or the fair coin (H1)?

5. (10 pts.) Lunch Date
Alice and Bob agree to try to meet for lunch between 12 and 1pm at their favorite sushi restaurant. Being
extremely busy they are unable to specify their arrival times exactly, and can say only that each of them
will arrive (independently) at a time that is uniformly distributed within the hour. In order to avoid wasting
precious time, if the other person is not there when they arrive they agree to wait exactly fifteen minutes
before leaving. What is the probability that they will actually meet for lunch? Phrase your solution using
the language of continuous random variables introduced in Note 18.

6. (10 pts.) James Bond
James Bond, my favorite hero, has again jumped off a plane. In the lecture we assumed the plane moves at
constant velocity from base A to base B, distance 100 km apart. Now suppose the plane takes off from the
ground at base A, climbs at an angle of 45 degrees to an altitude of 10 km, flies at that altitude for a while,
and then descends at an angle of 45 degrees to land at base B. All along the plane is assumed to fly at the
same speed. James Bond jump off at a time uniformly distributed over the duration of the journey. You
can assume that James Bond, being who he is, violates the laws of physics and descends vertically after he
jumps.

(a) Is there enough information to compute the probability density function of the position Bond lands?
If so, compute it. If not, specify any additional information you need and then compute it. Plot the
density.

(b) Compute the expectation and variance of this position. How do they compare to the case when the
plane flies at constant velocity ( with no ascending and descending)?

7. (10 pts.) How to Lie With Statistics
Here is some on-time arrival data for two airlines, A and B, into the airports of Los Angeles and Chicago.
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(Predictably, both airlines perform better in LA, which is subject to less flight congestion and less bad
weather.)

Airline A Airline B
# flights # on time #flights # on time

Los Angeles 600 534 200 188
Chicago 250 176 900 685

(a) Which of the two airlines has a better chance of arriving on time into Los Angeles? What about
Chicago?

(b) Which of the two airlines has a better chance of arriving on time overall?

(c) Do the results of parts (a) and (b) surprise you? Explain the apparent paradox, and interpret it by
writing down precise expressions involving conditional probabilities.

8. (10 pts.) Normal Distribution
If a set of grades on a Discrete Math examination in an inferior school (not UC!) are approximately normally
distributed with a mean of 64 and a standard deviation of 7.1, find:

(a) the lowest passing grade if the bottom 5% of the students fail the class;

(b) the highest B if the top 10% of the students are given A’s.

NOTE: You may assume that if X is normal with mean 0 and variance 1, then Pr[X ≤ 1.3] ≈ 0.9 and
Pr[X ≤ 1.65]≈ 0.95.

9. (10 pts.) The normal approximation to the binomial
Suppose B∼ Binomial(n, p), i.e., the r.v. B is binomially distributed: it is the number of heads after flipping
n coins, with heads probability p. We have seen previously E(B) = np and Var(B) = np(1− p). It turns
out that, for large n, the binomial distribution B approximates the normal distribution with the same mean
and variance. A standard rule of thumb is that the normal approximation is a reasonable approximation if
np≥ 5 and n(1− p)≥ 5. Use this fact to solve the following questions.

(a) Suppose that the final exam for an inferior Discrete Math class with a lazy prof (not at UC!) has 80
multiple-choice questions, where each question has 4 choices. If you guess blindly, you have a 1/4
chance of guessing right on each question. Calculate the approximate probability that, if you answer
every question by guessing blindly, you get 30 or more questions right.
Hint: Approximate the number of right answers as a normal distribution, normalize it to obtain a
standard normal distribution, then use a normal table.

(b) Find a value k for which, when you flip a fair coin 10,000 times, the probability of k or more heads is
approximately 0.20.
Hint: Approximate the number of heads as a r.v. X with an appropriate normal distribution, normalize
it to obtain a standard normal distribution, then use a normal table.

Advice: If using an online normal calculator, we recommend always normalizing the random variable first,
so that you have a standard normal distribution. We have noticed that some online normal calculators aren’t
always perfectly accurate when dealing with something other than the standard normal.
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Optional Problems
These problems are for extra practice, and they will not be graded, so don’t turn them in! We will provide
solutions, however.

10. (0 pts.) Bayesian Learning

(a) Consider the example in class, where there are n coins with biased probabilities p1, p2, . . . , pn. A coin
is randomly chosen and we want to learn about its identity by flipping it multiple times. Suppose
you observe the outcomes Y1 = b1,Y2 = b2, . . .. To keep track of what you have learnt about X , the
identity of the unknown coin, you want to compute for every k, the conditional distribution of X given
Y1 = b1,Y2 = b2, . . . ,Yk = bk. However, you don’t want to start from scratch for each k. Give a recursive
formula for computing the conditional distribution of X given Y1 = b1, . . . ,Yk+1 = bk+1 in terms of bk+1
and the conditional distribution of X given Y1 = b1, . . . ,Yk = bk. You may find the following conditional
version of Bayes’ rule very useful:

Pr[A|B,C] =
Pr[A|C]Pr[B|A,C]

Pr[B|C]
(1)

(b) Take n = 3, p1 = 2/3, p2 = 0.5, p3 = 0.2. Simulate one run of the experiment by randomly choosing
a coin and flipping it successively. Use your recursive formula in part (c) to compute the conditional
distribution of X given the observations up to time k. Plot the conditional distributions for k = 1, k = 5,
k = 10 and k = 15. In your simulated run, would you say that learning is taking place as you see more
observations?

11. (0 pts.) Cumulative Distribution Function
In class, the statistics of a r.v. are specified by the distribution in the discrete case and specified by the prob-
ability density function (pdf) in the continuous case. To unify the two cases, we can define the cumulative
distribution function (cdf) F for a r.v., which is valid for both discrete and continuous r.v.’s:

F(a) := Pr[X ≤ a], a ∈ R.

(a) In the discrete case, show that the cdf of a r.v. contains exactly the same information as its distribution,
by expressing F in terms of the distribution and expressing the distribution in terms of F .

(b) In the continuous case, show that the cdf of a r.v. contains exactly the same information as its pdf, by
expressing F in terms of the pdf and expressing the pdf in terms of F .

(c) Compute and plot the cdf for (i) X ∼ Geom(p) , (ii) X ∼ Exp(λ ).

(d) Identify two key properties that a cdf of any r.v. has to satisfy.

12. (0 pts.) A difference between discrete and continuous r.v.’s
Discrete and continuous r.v.’s have a lot of similarities but some differences too.

(a) Suppose X is a discrete r.v. Let the r.v. Y = cX for some constant c. Express the distribution of Y in
terms of that of X .

(b) Suppose X is a continuous r.v. Let the r.v. Y = cX for some constant c. Express the pdf of Y in terms
of that of X . Is there any difference with the discrete case? [Hint: work with cdf’s introduced in Q.12.]

(c) If X ∼ N(µ,σ2), what is the density of Y = cX?
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