Names & Addresses

- What is a name?
- What is an address?
- What is the difference between names and addresses?

Internet Centric View

- Addresses:
 - Says how to reach an object, it has location semantics associated to it
 - It's in a format easy to process by computers
- Name:
 - Does not have any location semantics associated to it
 - It's in a format easier to understand/read/remember by people
- Examples:
 - IP address: 169.229.131.109
 - Name: arachne.berkeley.edu

Name Service

- Name space: define the set of possible names
 - Hierarchical (e.g., Unix and Windows file names)
 - Flat
- Bindings: the mapping between names and values (e.g., addresses)
 - Bindings can be implemented by using tables
- Resolution: procedure that, when invoked with a name, returns the corresponding value
- Name server: specific implementation of a resolution mechanism that is available on the network and that can be queried by sending messages
General View

- In general there are multiple mappings

 Host name: arachne.berkeley.edu
 DNS resolution
 IP address: 169.229.131.109
 ARP (Address Resolution Protocol)
 Ethernet MAC address: 12.34.56.78.90.12

Mapping

- Multiple names can map onto the same address
 - Example: www.berkeley.edu and arachne.berkeley.edu maps to the same machine (i.e., the same IP address)
- One name can map onto multiple addresses
 - Example: www.yahoo.com can be mapped to multiple machines

Name Hierarchy

- Unique domain suffix is assigned by the Internet Authority
- The domain administrators have complete control over the domain
- No limit on the number of subdomains or number of levels
- Name space is not related with the physical interconnection
- Geographical hierarchy is allowed (e.g., cnr1.berkeley.edu)
- A name could be a domain or an individual objects
Top Level Domains

<table>
<thead>
<tr>
<th>Domain Name</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>com</td>
<td>Commercial</td>
</tr>
<tr>
<td>edu</td>
<td>Educational</td>
</tr>
<tr>
<td>gov</td>
<td>Government</td>
</tr>
<tr>
<td>mil</td>
<td>Military</td>
</tr>
<tr>
<td>net</td>
<td>Network</td>
</tr>
<tr>
<td>org</td>
<td>Other organizations</td>
</tr>
<tr>
<td>country code</td>
<td>au, uk, ca, …</td>
</tr>
</tbody>
</table>

DNS Name Servers

- Why not centralize DNS?
 - Single point of failure
 - Traffic volume
 - Distant centralized database
 - Maintenance
- Doesn’t scale!

Server Hierarchy: Zones

- A zone corresponds to an administrative authority that is responsible for that portion of the hierarchy

Server Hierarchy

- Server are organized in hierarchies
- Each server has authority over a portion of the hierarchy
 - A single node in the name hierarchy cannot be split
 - A server maintains only a subset of all names
 - It needs to know other servers that are responsible for the other portions of the hierarchy
Server Hierarchy

- Authority: each server has the name to address translation table for all names in the name space it controls
- Every server knows the root
- Root server knows about all top-level domains

DNS Name Servers

- No server has all name-to-IP address mappings
- Local name servers:
 - Each ISP (company) has local (default) name server
 - Host DNS query first go to local name server
- Authoritative name servers:
 - For a host: stores that host’s (name, IP address)
 - Can perform name/address translation for that host’s name

DNS: Root Name Servers

- Contacted by local name server that can not resolve name
- Root name server:
 - Contacts authoritative name server if name mapping not known
 - Gets mapping
 - Returns mapping to local name server
- Dozen root name servers worldwide

Simple DNS Example

Host *whistler.cs.cmu.edu* wants IP address of *www.berkeley.edu*

1. Contacts its local DNS server, *mango.srv.cs.cmu.edu*
2. *mango.srv.cs.cmu.edu* contacts root name server, if necessary
3. Root name server contacts authoritative name server, *ns1.berkeley.edu*, if necessary
DNS Example

Root name server:
- May not know authoritative name server
- May know intermediate name server, who to contact to find authoritative name server?

DNS: Iterated Queries

Recursive query:
- Puts burden of name resolution on contacted name server
- Heavy load?

Iterated query:
- Contacted server replies with name of server to contact
 - "I don't know this name, but ask this server"

Discussion

- Robustness
 - Use multiple replicas, but...
 - ...what if someone mounts a denial of service attack to all root servers?
- Performance:
 - Use caching to speed-up subsequent queries to the same name
- What about update/notify?
 - Mechanisms under design by IETF (RFC 2136; http://www.ietf.org/html.charters/dnsind-charter.html)

Summary

- DNS: maps names onto IP address
- Name space and the administration are both hierarchical
- Replication: used to increase robustness
- Caching: used to increase the performance