EE 122: Ethernet and 802.11

Ion Stoica
September 18, 2002

(* this talk is based in part on the on-line slides of J. Kurose & K. Rose)
High Level View

- Goal: share a communication medium among multiple hosts connected to it
- Problem: arbitrate between connected hosts
- Solution goals:
 - High resource utilization
 - Avoid starvation
 - Simplicity (non-decentralized algorithms)
Medium Access Protocols

- **Channel partitioning**
 - Divide channel into smaller “pieces” (e.g., time slots, frequency)
 - Allocate a piece to node for exclusive use

- **Random access**
 - Allow collisions
 - “recover” from collisions

- **“Taking-turns”**
 - Tightly coordinate shared access to avoid collisions
Random Access protocols

- When node has packet to send
 - Transmit at full channel data rate R.
 - No *a priori* coordination among nodes

- Two or more transmitting nodes -> “collision”,

- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions

- Examples of random access MAC protocols:
 - Slotted ALOHA
 - CSMA and CSMA/CD
Slotted Aloha

- Time is divided into equal size slots (= packet transmission time)
- Node with new arriving pkt: transmit at beginning of next slot
- If collision: retransmit pkt in future slots with probability p, until successful.
Slotted Aloha Efficiency

- What is the maximum fraction of successful transmissions?
- Suppose N stations have packets to send
 - Each transmits in slot with probability p
 - Prob. successful transmission S is (very approximated analysis!):

 by a particular node: $S = p \ (1-p)^{(N-1)}$

 by any of N nodes

 $S = \text{Prob (only one transmits)} = N \ p \ (1-p)^{(N-1)} \leq \frac{1}{e} = 0.37$
CSMA: Carrier Sense Multiple Access

- CS (Carrier Sense) means that each node can distinguish between an idle and a busy link.

- Sender operations:
 - If channel sensed idle: transmit entire packet
 - If channel sensed busy, defer transmission
 - Persistent CSMA: retry immediately with probability p when channel becomes idle
 - Non-persistent CSMA: retry after a random time interval
CSMA collisions

Collisions can occur:
propagation delay means
two nodes may not
hear each other’s
transmission

Collision:
entire packet transmission
time wasted

Note:
role of distance and
propagation delay in
determining collision prob.
CSMA/CD (Collision Detection)

- Collisions detected within short time
- Colliding transmissions aborted, reducing channel wastage
- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs
CSMA/CD collision detection

collision detect/abort time

t₀

t₁

istoica@cs.berkeley.edu
Overview

- Ethernet
 - Wireless (802.11)
Ethernet

- Dominant LAN technology
- CSMA/CD protocol
- Cheap $20 for 100Mbs!
Ethernet Frame Structure

- Sending adapter encapsulates IP datagram

- Preamble:
 - 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
 - Used to synchronize receiver, sender clock rates
Ethernet Frame Structure (more)

- Addresses: 6 bytes, frame is received by all adapters on a LAN and dropped if address does not match
- Type: 2 bytes, indicates the higher layer protocol
 - E.g., IP, Novell IPX, AppleTalk
- CRC: 4 bytes, checked at receiver, if error is detected, the frame is simply dropped
- Data payload: maximum 1500 bytes, minimum 46 bytes
Ethernet’s CSMA/CD

- Sense channel, if idle
 - If detect another transmission
 - Abort, send jam signal
 - Delay, and try again
 - Else
 - Send frame

- Receiver accepts:
 - Frames addressed to its own address
 - Frames addressed to the broadcast address (broadcast)
 - Frames addressed to a multicast address, if it was instructed to listen to that address
 - All frames (promiscuous mode)
Ethernet’s CSMA/CD (more)

- Jam signal: make sure all other transmitters are aware of collision; 48 bits;
- Exponential back-off
 - Goal: adapt retransmission attempts to estimated current load
 - Heavy load: random wait will be longer
 - First collision: choose K from $\{0,1\}$; delay is $K \times 512$ bit transmission times
 - After second collision: choose K from $\{0,1,2,3\}$
 - After ten or more collisions, choose K from $\{0,1,2,3,4,\ldots,1023\}$
Minimum Packet Size

- Why put a minimum packet size?
- Give a host enough time to detect collisions
- In Ethernet, minimum packet size = 64 bytes (two 6-byte addresses, 2-byte type, 4-byte CRC, and 46 bytes of data)
- If host has less than 46 bytes to send, the adaptor pads (adds) bytes to make it 46 bytes
- What is the relationship between minimum packet size and the length of the LAN?
Minimum Packet Size (more)

1) Time = t; Host 1 starts to send frame

2) Time = t + d; Host 2 starts to send a frame just before it hears from Host 1’s frame

3) Time = t + 2*d; Host 1 hears Host 2’s frame → detects collision

LAN length = (min_frame_size)*(light_speed)/(2*bandwidth) =
= (8*64b)*(2.5*10^8mps)/(2*10^7 bps) = 6400m approx
Ethernet Technologies: 10Base2

- 10: 10Mbps; 2: under 200 meters max cable length
- Thin coaxial cable in a bus topology

- Repeaters used to connect up to multiple segments
- Repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!
10BaseT and 100BaseT

- 10/100 Mbps rate; latter called “fast ethernet”
- T stands for Twisted Pair
- Hub to which nodes are connected by twisted pair, thus “star topology”
- CSMA/CD implemented at hub
10BaseT and 100BaseT (more)

- Max distance from node to Hub is 100 meters
- Hub can disconnect “jabbering adapter
- Hub can gather monitoring information, statistics for display to LAN administrators
Gbit Ethernet

- Use standard Ethernet frame format
- Allows for point-to-point links and shared broadcast channels
- In shared mode, CSMA/CD is used; short distances between nodes to be efficient
- Uses hubs, called here “Buffered Distributors”
- Full-Duplex at 1 Gbps for point-to-point links
Interconnecting LANs

- Why not just one big LAN?
 - Limited amount of supportable traffic: on single LAN, all stations must share bandwidth
 - Limited length
 - Large “collision domain” (can collide with many stations)
Overview

- Ethernet
 - Wireless (802.11)
Wireless (802.11)

- Designed for use in limited geographical area (i.e., couple of hundreds of meters)
- Designed for three physical media (run at either 1Mbps or 2 Mbps)
 - Two based on spread spectrum radio
 - One based on diffused infrared
Physical Link

- **Frequency hoping**
 - Transmit the signal over multiple frequencies
 - The sequence of frequencies is pseudo-random, i.e., both sender and receiver use the same algorithm to generate their sequences

- **Direct sequence**
 - Represent each bit by multiple (e.g., n) bits in a frame; XOR signal with a pseudo-random generated sequence with a frequency n times higher

- **Infrared signal**
 - Sender and receiver do not need a clear line of sight
 - Limited range; order of meters
Collision Avoidance: The Problems

- Reachability is not transitive: if A can reach C, and C can reach D, it doesn’t necessarily mean that A can reach D.

- Hidden nodes: A and C send a packet to B; neither A nor C will detect the collision!

- Exposed node: B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference)!
Multiple Access with Collision Avoidance (MACA)

Before every data transmission
- Sender sends a Request to Send (RTS) frame containing the length of the transmission
- Receiver respond with a Clear to Send (CTS) frame
- Sender sends data
- Receiver sends an ACK; now another sender can send data

When sender doesn’t get a CTS back, it assumes collision
Summary

- Arbitrate between multiple hosts sharing a common communication media

- Wired solution: Ethernet (use CSMA/CD protocol)
 - Detect collisions
 - Backoff exponentially on collision

- Wireless solution: 802.11
 - Use MACA protocol
 - Cannot detect collisions; try to avoid them