High Level View

- Goal: share a communication medium among multiple hosts connected to it
- Problem: arbitrate between connected hosts
- Solution goals:
 - High resource utilization
 - Avoid starvation
 - Simplicity (non-decentralized algorithms)

Medium Access Protocols

- Channel partitioning
 - Divide channel into smaller “pieces” (e.g., time slots, frequency)
 - Allocate a piece to node for exclusive use
- Random access
 - Allow collisions
 - “recover” from collisions
- “Taking-turns”
 - Tightly coordinate shared access to avoid collisions

Random Access protocols

- When node has packet to send
 - Transmit at full channel data rate R.
 - No a priori coordination among nodes
- Two or more transmitting nodes -> “collision”,
- Random access MAC protocol specifies:
 - How to detect collisions
 - How to recover from collisions
- Examples of random access MAC protocols:
 - Slotted ALOHA
 - CSMA and CSMA/CD
Slotted Aloha

- Time is divided into equal size slots (= packet transmission time)
- Node with new arriving pkt: transmit at beginning of next slot
- If collision: retransmit pkt in future slots with probability p, until successful.

Time

Slot

<table>
<thead>
<tr>
<th>Time</th>
<th>Node 1</th>
<th>Node 2</th>
<th>Node 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>S</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>E</td>
<td>S</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>E</td>
<td>S</td>
</tr>
</tbody>
</table>

Success (S), Collision (C), Empty (E) slots

Slotted Aloha Efficiency

- What is the maximum fraction of successful transmissions?
- Suppose N stations have packets to send
 - Each transmits in slot with probability p
 - Prob. successful transmission S is (very approximated analysis!):

\[S = p(1-p)^{N-1} \]

by a particular node: \(S = p(1-p)^{N-1} \)

by any of N nodes

\[S = \text{Prob (only one transmits)} = Np(1-p)^{N-1} \Rightarrow 1/e = 0.37 \]

CSMA: Carrier Sense Multiple Access

- CS (Carrier Sense) means that each node can distinguish between an idle and a busy link

Sender operations:
- If channel sensed idle: transmit entire packet
- If channel sensed busy, defer transmission
 - Persistent CSMA: retry immediately with probability p when channel becomes idle
 - Non-persistent CSMA: retry after a random time interval

CSMA collisions

Collisions can occur: propagation delay means two nodes may not hear each other's transmission

Collision: entire packet transmission time wasted

Note: role of distance and propagation delay in determining collision prob.
CSMA/CD (Collision Detection)

- Collisions detected within short time
- Colliding transmissions aborted, reducing channel wastage
- Easy in wired LANs: measure signal strengths, compare transmitted, received signals
- Difficult in wireless LANs

CSMA/CD collision detection

Overview

- Ethernet
 - Wireless (802.11)

Ethernet

- Dominant LAN technology
- CSMA/CD protocol
- Cheap $20 for 100Mbs!
Ethernet Frame Structure

- Sending adapter encapsulates IP datagram

 ![Ethernet Frame Structure Diagram]

- Preamble:
 - 7 bytes with pattern 10101010 followed by one byte with pattern 1010111
 - Used to synchronize receiver, sender clock rates

Ethernet Frame Structure (more)

- Addresses: 6 bytes, frame is received by all adapters on a LAN and dropped if address does not match
- Type: 2 bytes, indicates the higher layer protocol
 - E.g., IP, Novell IPX, AppleTalk
- CRC: 4 bytes, checked at receiver, if error is detected, the frame is simply dropped
- Data payload: maximum 1500 bytes, minimum 46 bytes

Ethernet’s CSMA/CD

- Sense channel, if idle
 - If detect another transmission
 - Abort, send jam signal
 - Delay, and try again
 - Else
 - Send frame
- Receiver accepts:
 - Frames addressed to its own address
 - Frames addressed to the broadcast address (broadcast)
 - Frames addressed to a multicast address, if it was instructed to listen to that address
 - All frames (promiscuous mode)

Ethernet’s CSMA/CD (more)

- Jam signal: make sure all other transmitters are aware of collision; 48 bits;
- Exponential back-off
 - Goal: adapt retransmission attempts to estimated current load
 - Heavy load: random wait will be longer
 - First collision: choose K from (0,1); delay is K x 512 bit transmission times
 - After second collision: choose K from (0,1,2,3)...
 - After ten or more collisions, choose K from (0,1,2,3,4,…,1023)
Minimum Packet Size

- Why put a minimum packet size?
- Give a host enough time to detect collisions
- In Ethernet, minimum packet size = 64 bytes (two 6-byte addresses, 2-byte type, 4-byte CRC, and 46 bytes of data)
- If host has less than 46 bytes to send, the adaptor pads (adds) bytes to make it 46 bytes
- What is the relationship between minimum packet size and the length of the LAN?

Minimum Packet Size (more)

- 1) Time = t; Host 1 starts to send frame
- 2) Time = t + d; Host 2 starts to send a frame just before it hears from Host 1's frame
- 3) Time = t + 2d; Host 1 hears Host 2's frame and detects collision

LAN length = (min_frame_size * light_speed / (2 * bandwidth)) = (8 * 64 / (2.5 * 10^8 /s) / (2 * 10^7 bps)) = 6400 m approx

Ethernet Technologies: 10Base2

- 10: 10Mbps; 2: under 200 meters max cable length
- Thin coaxial cable in a bus topology
- Repeater repeats bits it hears on one interface to its other interfaces: physical layer device only!

10BaseT and 100BaseT

- 10/100 Mbps rate; latter called "fast ethernet"
- T stands for Twisted Pair
- Hub to which nodes are connected by twisted pair, thus "star topology"
- CSMA/CD implemented at hub
10BaseT and 100BaseT (more)

- Max distance from node to Hub is 100 meters
- Hub can disconnect “jabbering adapter
- Hub can gather monitoring information, statistics for display to LAN administrators

Gbit Ethernet

- Use standard Ethernet frame format
- Allows for point-to-point links and shared broadcast channels
- In shared mode, CSMA/CD is used; short distances between nodes to be efficient
- Uses hubs, called here “Buffered Distributors”
- Full-Duplex at 1 Gbps for point-to-point links

Interconnecting LANs

- Why not just one big LAN?
 - Limited amount of supportable traffic: on single LAN, all stations must share bandwidth
 - Limited length
 - Large “collision domain” (can collide with many stations)

Overview

- Ethernet
 - Wireless (802.11)
Wireless (802.11)

- Designed for use in limited geographical area (i.e., couple of hundreds of meters)
- Designed for three physical media (run at either 1Mbps or 2 Mbps)
 - Two based on spread spectrum radio
 - One based on diffused infrared

Physical Link

- Frequency hoping
 - Transmit the signal over multiple frequencies
 - The sequence of frequencies is pseudo-random, i.e., both sender and receiver use the same algorithm to generate their sequences
- Direct sequence
 - Represent each bit by multiple (e.g., n) bits in a frame; XOR signal with a pseudo-random generated sequence with a frequency n times higher
- Infrared signal
 - Sender and receiver do not need a clear line of sight
 - Limited range; order of meters

Collision Avoidance: The Problems

- Reachability is not transitive: if A can reach C, and C can reach D, it doesn’t necessarily mean that A can reach D
- **Hidden nodes**: A and C send a packet to B; neither A nor C will detect the collision!
- **Exposed node**: B sends a packet to A; C hears this and decides not to send a packet to D (despite the fact that this will not cause interference!)

Multiple Access with Collision Avoidance (MACA)

- Before every data transmission
 - Sender sends a Request to Send (RTS) frame containing the length of the transmission
 - Receiver respond with a Clear to Send (CTS) frame
 - Sender sends data
 - Receiver sends an ACK; now another sender can send data
- When sender doesn’t get a CTS back, it assumes collision
Summary

- Arbitrate between multiple hosts sharing a common communication media
- Wired solution: Ethernet (use CSMA/CD protocol)
 - Detect collisions
 - Backoff exponentially on collision
- Wireless solution: 802.11
 - Use MACA protocol
 - Cannot detect collisions; try to avoid them