EE 122: Switching and Forwarding

Kevin Lai
September 23, 2002

Direct Link Network Review

- Data link layer presents a single media (e.g., single wire) network model
- Problem and solutions
 - Framing
 - character stuffing, byte counting, bit stuffing, clocked framing
 - Error detection
 - parity, checksum, CRC
 - Reliability
 - stop and go, sliding window
- solutions also apply to similar problems in higher layers
 - problems can not be completely solved at data link layer
 - only implemented in data link layer as optimization

Limitations of Direct Link Networks

- distance
 - distance increases propagation delay
 - large propagation delay causes large coordination delay
 - e.g., Ethernet collision detection requires 2*prop_delay
- number of hosts
 - More hosts increases the probability of collisions
 - collisions decrease efficiency of link
- bandwidth
 - bandwidth of link is shared among all connected nodes
- single media type
 - different media (e.g., fiber, Ethernet, wireless) have different tradeoffs for performance, cost, etc.

Direct Link Networks v.s. Switching

Direct Link Network Switched Network

Single link n links

Switch

Emulates clique

Definitions

- switch (aka bridge)
 - does switching
 - operates at data link layer
 - router also does switching, but at network layer
- switching consists of
 - forwarding
 - read data from input links,
 - decide which output link to forward on, and
 - examine packet header or incoming circuit, and
 - look up in forwarding table
 - transmit it on one of the output links (unicast)
 - routing
 - how the switch/router builds up its forwarding table

Properties

- spans larger physical area than direct link network (DLN)
 - can connect multiple switches together
- supports more hosts than DLN
 - hosts on separate links can transmit at same time
- higher aggregate bandwidth than DLN
 - approaches (n/2)*b instead of b, n = number of
 - switched links, b = bandwidth of one link
- supports more than one media type
 - more expensive for bridge than router
Bridge/Router Comparison

- Router interconnects different link layer protocols more easily
- Basic:
 - Ethernet
 - 802.11b
 - ATM
 - SONET
- O(n^2) converters
 - n = different link types

Forwarding Techniques

- packet switching:
 - aka [packet|datagram|connectionless] [switching|forwarding]
 - source routing
 - virtual circuit switching:
 - aka virtual circuit forwarding
 - circuit switching
 - despite names, all ways for switch to decide which output port to forward data

Packet Switching

- Data is separated into packets
- Each packet is forwarded independently of previous packets
 - packets between two hosts can follow different paths
- On link failure, adjoining switches select new route and continue forwarding packets
- Statistical multiplexing:
 - any one host may use 100% of a link’s bandwidth

Statistical Multiplexing v.s. Resource Reservations

- Reserve explicit amount of resources (e.g., bandwidth)
 - get exactly that amount
- Statistical multiplexing: get whatever is available
 - low utilization
 - congestion, packet loss

Packet Switching Operation

- Each switch maintains a forwarding table
 - forwarding entry: (address, output port)
- Upon packet arrival
 - input port forwards the packet to the output port whose address matches packet’s destination address
 - exact match
 - longest prefix match
 - forwarding entry: (address prefix, output port)
 - forward packet to the output port whose address matches packet’s destination address in the longest number of bits

Packet Switching Properties

- Expensive forwarding
 - forwarding table size depends on number of different destinations
 - must lookup in forwarding table for every packet
- Robust
 - link and router failure may be transparent for end-hosts
- High bandwidth utilization
 - statistical multiplexing
- No service guarantees
 - Network allows hosts to send more packets than available bandwidth → congestion → dropped packets
Source Routing

- Each packet specifies the sequence of routers, or alternatively the sequence of output ports, from source to destination

Source Routing (cont’d)

- Gives the source control of the path
- Not scalable
 - Packet overhead proportional to the number of routers
 - Typically, require variable header length which is harder to implement
- Hard for source to have complete information
- Loose source routing → sender specifies only a subset of routers along the path

Virtual Circuit (VC) Switching

- Packets not switched independently
- Establish virtual circuit before sending data
- Forwarding table entry
 - (input port, input VCI, output port, output VCI)
- VCI – Virtual Circuit Identifier
- Each packet carries a VCI in its header
- Upon a packet arrival at interface i
 - Input port uses i and the packet’s VCI v to find the routing entry (i, v, i’, v’)
 - Replaces v with v’ in the packet header
 - Forwards packet to output port i’

VC Forwarding: Example

VC Forwarding (cont’d)

- A signaling protocol is required to set up the state for each VC in the routing table
 - A source needs to wait for one RTT (round trip time) before sending the first data packet
- Can provide per-VC QoS
 - When we set the VC, we can also reserve bandwidth and buffer resources along the path

Virtual Circuit Switching Properties

- Less expensive forwarding
 - Forwarding table size depends on number of different circuits
 - Must lookup in forwarding table for every packet
- Much higher delay for short flows
 - 1 RTT delay for connection setup
- Less robust
 - End host must spend 1 RTT to establish new connection after link and router failure
- Flexible service guarantees
 - Either statistical multiplexing or resource reservations
Circuit Switching

- Packets not switched independently
- Establish circuit before sending data
- Circuit is a dedicated path from source to destination
 - E.g., old style telephone switchboard, where establishing circuit means connecting wires in all switches along path
 - E.g., modern dense wave division multiplexing (DWDM) form of optical networking, where establishing circuit means reserving an optical wavelength in all switches along path
- No forwarding table

Circuit Switching Properties

- Cheap forwarding
 - No table lookup
- Much higher delay for short flows
 - 1 RTT delay for connection setup
- Less robust
 - End host must spend 1 RTT to establish new connection after link and router failure
- Must use resource reservations

Forwarding Comparison

<table>
<thead>
<tr>
<th></th>
<th>Pure Packet Switching</th>
<th>Initial Circuit Switching</th>
<th>Circuit Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarding Cost</td>
<td>High</td>
<td>Low</td>
<td>None</td>
</tr>
<tr>
<td>Bandwidth Utilization</td>
<td>High</td>
<td>Flexible</td>
<td>Low</td>
</tr>
<tr>
<td>Resource Reservations</td>
<td>None</td>
<td>Flexible</td>
<td>Low</td>
</tr>
<tr>
<td>Robustness</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Routing

- Update forwarding/routing tables
- Manual configuration
 - Simple, error prone, work for administrator
- Learning bridges
 - All that is needed for single bridge
- Spanning Tree
 - Necessary for multiple bridges
- Described in internetworking section
 - Distance Vector
 - Link State

Learning Bridges

Learning Bridge Problem
Spanning Tree

Summary

- Switching
 - overcome limitations of direct link networks
- Forwarding techniques
 - packet switching
 - source routing
 - virtual circuit switching
 - circuit switching
- Routing techniques