4 N\
Administrivia

» New Office Hours:
—Thursday 12:00-1:00 in 415 or 420 (come find me!)
— After class on Tuesdays: walk with me to Soda

* Class going more slowly than anticipated
—Will pivot to real material, skipping some nonessentials

* Lecture on September 18
—Will be returning from Moscow that day

* Homework #1 released (note submission process)
—Due in two weeks....this should not be hard
—Project #1 will follow shortly

—Guesses about dates for future assignments now online

(" 2\
Internet Design:
Goals and Principles
EE122 Fall 2012
Scott Shenker
http://inst.eecs.berkeley.edu/~ee122/
Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley
1
J

4 2\

Outline

* Design Goals

* Modularity

« Layering

» End-to-End Principle

* Fate-Sharing

)

(" 2\

David Clark

» Wrote a paper in 1988 that tried to capture why the
Internet turned out as it did

* In particular, it described an ordered list of
priorities that informed the design

* We have him with us here today....Eastwood-style

S

2
e N
Internet Design Goals
J
e N
Internet Design Goals (Clark ‘88)
» Connect existing networks
* Robust in face of failures
+ Support multiple types of delivery services
« Accommodate a variety of networks
+ Allow distributed management
 Easy host attachment
* Cost effective
* Allow resource accountability
6
)

Vs

Connect Existing Networks

» Wanted single protocol that could be used to
connect any pair of (existing) networks

* The Internet Protocol (IP) is that unifying protocol
—All (existing) networks must be able to implement it

« This is where the need for best effort arose....

Vs

Types of Delivery Services

- Use of the term “delivery services” already implied
an application-neutral network

* Built lowest common denominator service
— Allow end-based protocols to provide better service
—For instance, turn unreliable service into reliable service

» Example: recognition that TCP wasn’t needed (or
wanted) by some applications
—Separated TCP from IP, and introduced UDP

J
N
Decentralized Management
* Both a curse and a blessing
—Important for easy deployment
—Makes management hard today
v

Vs

Vs

Robust

* As long as network is not partitioned, two hosts
should be able to communicate (eventually)

* Failures (excepting network partition) should not
interfere with endpoint semantics

* Very successful, not clear how relevant now
— Availability more important than recovering from disaster

» Second notion of robustness is underappreciated
—Key to modularity of Internet

Variety of Networks

* Incredibly successful!
—Minimal requirements on networks

—No need for reliability, in-order, fixed size packets, etc.
— A result of aiming for lowest common denominator

« IP over everything

—Then: ARPANET, X.25, DARPA satellite network..
—Now: ATM, SONET, WDM...

10

Host Attachment

* Clark observes that cost of host attachment may
be higher because hosts have to be smart

+ But the administrative cost of adding hosts is very
low, which is probably more important
— Plug-and-play kind of behavior....

12

4 N\
Cost Effective

4 N\

» Cheaper than circuit switching at low end
» More expensive than circuit switching at high end

* Not a bad compromise:
—Cheap where it counts (low-end)
—More expensive for those who can pay....

13/
e N
Internet Motto
We reject kings, presidents, and voting. We believe
in rough consensus and running code.”
David Clark

15
J
e N

Questions to think about....

» What priorities would a commercial design have?

» What would the resulting design look like?

» What goals are missing from this list?

17

Resource Accountability
« Failure!
“
e N
Real Goals
* Build something that works!
+ Connect existing networks
* Robust in face of failures
» Support multiple types of delivery services
« Accommodate a variety of networks
+ Allow distributed management
* Easy host attachment
« Cost effective
\Le Allow resource accountability %)
e N
Modularity
J

Vs

Modularity in Computer Science

“Modularity based on abstraction
is the way things get done”

--Barbara Liskov

(" 2\

The Role of Modularity

19

Vs

Computer System Modularity

* We can'’t build big systems out of spaghetti code
—Impossible to understand, debug
—Hard to update

* We need to limit the scope of changes, so that we
can update system without rewriting it from scratch

» Modularity is how we limit the scope of changes
—And understand the system at a higher level

* Partition system into modules
—Each module has well-defined interface

« Interfaces give flexibility in implementation
—Changes have limited scope

* Examples:
—Libraries encapsulating set of functionality
—Programming language abstracts away CPU

* The trick is to find the right modularity
—The interfaces should be long-lasting

20

(2\

Finding the Right Modularity

—If interfaces are changing often, modularity is wrong a)

Vs

Network System Modularity

» Decompose problem into tasks or abstractions
—Task: e.g., compute a function
— Abstraction: e.g., provide reliable storage

+ Define a module for each task/abstraction
—Involves defining a clean interface for each module
—"“Clean” means hiding unnecessary details

* Implement system a few times:
—If interfaces seem to hold, you are on the right track...

» The need for modularity still applies
—And is even more important! (why?)

* Network implementations not just distributed
across many lines of code
—Normal modularity “organizes” that code

* Networking is distributed across many machines
—Hosts
—Routers

2)

4 2\
Network Modularity Decisions

2)

* How to break system into modules?
— Classic decomposition into tasks

* Where are modules implemented?
—Hosts?
—Routers?
—Both?

* Where is state stored?
—Hosts?
—Routers?
—Both?

%)

(" 2\
Leads to three design principles

* How to break system into modules?
—Layering

* Where are modules implemented?
—End-to-End Principle

* Where is state stored?
—Fate-Sharing

=)

(2\
Tasks in Networking

* What does it take to send packets across country?

* Simplistic decomposition:
—Task 1: send along a single wire
> 4
—Task 2: stitch these together to go across country

o o o o o
© @ @ g v

* This gives idea of what | mean by decomposition
—Next slide presents a much more detailed version

(" 2\
Layering

J

(" 2\

Tasks in Networking (bottom up)

7)

(" 2\
Resulting Modules (layers)

* Electrons on wire
* Bits on wire
* Packets on wire

* Deliver packets across local network
—Local addresses

* Deliver packets across country
—Global addresses

* Ensure that packets get there

» Do something with the data

« Electrons on wire (contained in next layer)
* Bits on wire (Physical)
« Packets on wire (contained in next layer)

« Deliver packets across local network (Datalink)
—Local addresses

« Deliver packets across country (Network)
—Global addresses

* Ensure that packets get there (Transport)

=)

(" 2\
Five Layers (top-down)

* Do something with the data (Application)

* Application: Providing network support for apps
* Transport (L4): (Reliable) end-to-end delivery

* Network (L3): Global best-effort delivery

+ Datalink (L2): Local best-effort delivery

* Physical: Bits on wire

* Interactions between these components?
—Do all components talk to each other?
—Or are the components limited in their interactions?

» Answer: they are strictly layered!)

p
Strictly Layered Dependencies

Best-effort global packet delivery\

...builton...
Best-effort local packet delivery_,

...builton... CSMA async sonet...

Physical transfer of bits/

Applications
...builton...

Reliable (or unreliable) transport
...builton...

copper fibre radio...

Vs

N
Layering Crucial to Internet’s Success
« Innovation at most levels [‘ \
— Applications (lots) email WWW phone...
—Transport (few) SMTP HTTP RTP...
— Datalink (few)
—Physical (lots)
* Innovation proceeded
largely in parallel
ethernet PPP..
* Pursued by very different (CSMA async sonet._.\\
communities 5 5
—Like PL and chip designs \ SopreRfieac }
e N
What Gets Implemented on Host?
« Bits arrive on wire, must make it up to application
* Therefore, all layers must exist at host!
%)

p
Three Observations

* Each layer:
—Depends on layer below
—Supports layer above
—Independent of others

{email www phone,..\
\SMTP HTTP RTP,..}

* Multiple versions in layer
—Interfaces differ somewhat
—Components pick which

lower-level protocol to use

ethernet PPP..
(CSMA async sonet...\l

* But only one IP layer
—Unifying protocol

\ copper fibre radio...}

p
Distributing Layers Across Network

* Layers are simple if only on a single machine
—Just stack of modules interacting with those above/below

* But we need to implement layers across machines
—Hosts
—Routers (switches)

* What gets implemented where?

p
What Gets Implemented on Router?

* Bits arrive on wire
—Physical layer necessary

* Packets must be delivered to next-hop
—Datalink layer necessary

* Routers participate in global delivery
—Network layer necessary

* Routers don’t support reliable delivery

—Transport layer (and above) not supported

*)

~N

Vs

What Gets Implemented on Switches?

» Switches do what routers do, except they don’t
participate in global delivery, just local delivery

* They only need to support Physical and Datalink

—Don't need to support Network layer

» Won't focus on the router/switch distinction
—When | say switch, | almost always mean router
—Almost all boxes support network layer these days

)
(2\
Simple Diagram
* Lower three layers implemented everywhere
» Top two layers implemented only at hosts
Application Application
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B
»)
(" 2\
Physical Communication
« Communication goes down to physical network
» Then from network peer to peer
» Then up to relevant layer
Application Application
Transpor Transport
Network \etwork
Datalink | Datalink | Datalink
Physical Physical Physical
Host A Router Host B

Vs

Complicated Diagram

host

host
TCP TCP
I router router]
R e
Ethernet Ethernet SONET SONET Ethernet Ethernet
interface interface interface interface interface interface
I I I | |
I J |
=)

)

Logical Communication

« Layers interacts with peer’s corresponding layer

Application Application
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B
)

p
Layer Encapsulation .

User A User B

- Appl: Get index.html| -
- Trans: Connection ID -
- Net: Source/Dest -

Common case: 20 bytes TCP header + 20 bytes IP header
+ 14 bytes Ethernet header = 54 bytes overhead

2)

~N

Vs

Example of Layering in the Real World

* CEO A writes letter to CEO B
—Folds letter and hands it to administrative aide

‘Bdar g

—Puts Ietter in envelope with CEO B’s full name
—Takes to FedEx

. FQBRY ofRays are numbered.

—Puts letter in larger envelope
—Puts name andpigggt address on FedEx envelope
— Puts package on FedEx delivery truck

» FedEx delivers to other company

Vs

The Path Through FedEx

Higher *

k!,
at Emkjlcghest Level of

urln I’al’lSIt

IS outlng

Sorting
Office

Truck

FET

Sorting
Office Office
lCrate Crate N Newe Crate T
Airport —— > Airport —— > Airport
Deepest Packaging (Envelope+FE+Crate)
at the Lowest Level of Transport

Truck

lFE

Sorting

“)

p
Back to Encapsulation (Headers)

User A
Appl: Get index.htm| -

Trans: Connection ID -

Net: Source/Dest -

Common case: 20 bytes TCP header + 20 bytes IP header
+ 14 bytes Ethernet header = 54 bytes overhead

Vs

The Path of the Letter

“Peers” on each side understand the same things
No one else needs to
Lowest level has most packaging

)

CEO SemangiteContent ~ CEO
Aide Eldesitipe Aide
FedEx —edeseltaalepe—> FedEx
(FE)
*)
e A
Back to Networking Picture
« Communication goes down to physical network
« Then from network peer to peer
« Then up to relevant layer
Application Application
Transpor: Transport
Network \etwork
Datalink | Datalink | Datalink
Physical ! Physical : Physical
Host A Router Host B
%)
N

Five Minute Break....

Vs

Three Internet Design Principles

* How to break system into modules?
—Layering

* Where are modules implemented?
—End-to-End Principle

* Where is state stored?
—Fate-Sharing

Vs

Placing Network Functionality

« Influential paper: “End-to-End Arguments in
System Design” by Saltzer, Reed, and Clark (‘84)
—End-to-end principle

* Basic observation: some types of network
functionality can only be correctly implemented
end-to-end

« In these cases, end hosts:

—Can satisfy the requirement without network’s help
—Must do so, since can’t rely on network’s help

* Thus, don’t need to implement them in network
—Debate about what the network does and doesn't do...

Vs

Discussion

%)

« Solution 1 cannot be made perfectly reliable
—What happens if a network element misbehaves?
—Receiver has to do the check anyway!

« Solution 2 can also fail, but only if the end system
itself fails (i.e., doesn’t follow its own protocol)

* Solution 2 only relies on what it can control
—The endpoint behavior

« Solution 1 requires endpoints trust other elements
—That's not what reliable means!

The End-to-End Principle

Everyone believes it, but no one knows
what it means

Vs

Example: Reliable File Transfer

Host A Host B

=5
* Solution 1: make each step reliable, and string them

together to make reliable end-to-end process

* Solution 2: allow steps to be unreliable, but do end-
to-end check and try again if necessary

=)

Vs

Robust (From Clark’s Paper)

=)

* As long as the network is not partitioned, two
endpoints should be able to communicate

* Failures (excepting network partition) should not
interfere with endpoint semantics

%)

4 R
Question?

* Should you ever implement reliability in network?

 Perhaps, if needed for reasonable efficiency
—Don't aim for perfect reliability, but ok to reduce error
rate

« If individual links fail 10% of the time, and are
traversing 10 links, then E2E error rate is 65%

* Implementing one retransmission on links
—Link error rate reduced to 1%, E2E error rate is 9.5%

%)
e N
“Only-if-Sufficient” Interpretation
» Don’t implement a function at the lower levels of
the system unless it can be completely
implemented at this level
* Unless you can relieve the burden from hosts,
dont bother
)
e N

“Only-if-Useful” Interpretation

« If hosts can implement functionality correctly,
implement it in a lower layer only as a performance
enhancement

» But do so only if it does not impose burden on
applications that do not require that functionality

(" 2\

Back to the End-to-End Principle

Implementing such functionality in the network:
* Doesn’t reduce host implementation complexity
* Does increase network complexity

+ Often imposes delay/overhead on all applications,
even if they don’t need functionality

* However, implementing in network can enhance
performance in some cases
—E.g., very lossy link

* Three interpretations of the end-to-end principle

)

(" 2\
“Only-if-Necessary” Interpretation

* Don’'t implement anything in the network that can
be implemented correctly by the hosts
—E.g., multicast

» Make network layer absolutely minimal
—This E2E interpretation trumps performance issues
—Increases flexibility, since lower layers stay simple

»)

*)

(" 2\

What Does E2E Principle Ignore?

* There are other stakeholders besides users
—1SP might care about the good operation of their network
—Various commercial entities
—Money-chain might require insertion into the network

* The need for middlebox functionality
—Some functions that, for management reasons, are more
easily done in the network.

©)

10

(" 2\
Three Internet Design Principles

* How to break system into modules?
—Layering

* Where are modules implemented?
—End-to-End Principle

* Where is state stored?
—Fate-Sharing

J

(2\

Fate-Sharing

Fate-Sharing

* Note that E2E principles relied on “fate-sharing”
—Invariants break only when endpoints themselves break
—Minimize dependence on other network elements

* This should dictate placement of storage

(" 2\
General Principle: Fate-Sharing

©)

(" 2\
A Cynical View of Distributed Systems

* When storing state in a distributed system, co-
locate it with entities that rely on that state

* Only way failure can cause loss of the critical state
is if the entity that cares about it also fails ...
— ... in which case it doesn’t matter

« Often argues for keeping network state at end
hosts rather than inside routers
—In keeping with End-to-End principle
—E.g., packet-switching rather than circuit-switching
—E.g., NFS file handles, HTTP “cookies”

“A distributed system is one in which the failure of a
computer you didn't even know existed can render
your own computer unusable”

---Leslie Lamport

(" 2\
Decisions and Their Principles

=)

» How to break system into modules
—Dictated by Layering

* Where modules are implemented
—Dictated by End-to-End Principle

» Where state is stored
—Dictated by Fate-Sharing

)

11

4 2\
Question

« If reliability is implemented by the ends, how is it
done?

* That's the subject of the next lecture!

J

12

