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Internet Design: 

Goals and Principles 

EE122 Fall 2012 

Scott Shenker 

http://inst.eecs.berkeley.edu/~ee122/ 

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson 

and other colleagues at Princeton and UC Berkeley 



Administrivia 

• New Office Hours: 
–Thursday 12:00-1:00 in 415 or 420 (come find me!) 

–After class on Tuesdays: walk with me to Soda 

• Class going more slowly than anticipated 
–Will pivot to real material, skipping some nonessentials 

• Lecture on September 18 
–Will be returning from Moscow that day 

• Homework #1 released (note submission process) 
–Due in two weeks….this should not be hard 

–Project #1 will follow shortly 

–Guesses about dates for future assignments now online 
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Outline 

• Design Goals  

• Modularity 

• Layering 

• End-to-End Principle 

• Fate-Sharing 
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Internet Design Goals 



David Clark 

• Wrote a paper in 1988 that tried to capture why the 

Internet turned out as it did 

• In particular, it described an ordered list of 

priorities that informed the design 

• We have him with us here today….Eastwood-style 
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Internet Design Goals (Clark ‘88) 

• Connect existing networks 

• Robust in face of failures  

• Support multiple types of delivery services 

• Accommodate a variety of networks 

• Allow distributed management 

• Easy host attachment 

• Cost effective 

• Allow resource accountability  
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Connect Existing Networks 

• Wanted single protocol that could be used to 

connect any pair of (existing) networks 
 

• The Internet Protocol (IP) is that unifying protocol 
–All (existing) networks must be able to implement it 

 

• This is where the need for best effort arose…. 
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Robust 

• As long as network is not partitioned, two hosts 

should be able to communicate (eventually) 

• Failures (excepting network partition) should not 

interfere with endpoint semantics 

 

• Very successful, not clear how relevant now 
–Availability more important than recovering from disaster 

• Second notion of robustness is underappreciated 
–Key to modularity of Internet 
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Types of Delivery Services 

• Use of the term “delivery services” already implied 

an application-neutral network 

• Built lowest common denominator service 
–Allow end-based protocols to provide better service 

–For instance, turn unreliable service into reliable service 

• Example: recognition that TCP wasn’t needed (or 

wanted) by some applications 
–Separated TCP from IP, and introduced UDP 
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Variety of Networks 

• Incredibly successful! 
–Minimal requirements on networks 

–No need for reliability, in-order, fixed size packets, etc. 

–A result of aiming for lowest common denominator 

 

• IP over everything 
–Then: ARPANET, X.25, DARPA satellite network.. 

–Now: ATM, SONET, WDM… 

 

 



Decentralized Management 

• Both a curse and a blessing 
– Important for easy deployment 

–Makes management hard today 
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Host Attachment 

• Clark observes that cost of host attachment may 

be higher because hosts have to be smart 
 

• But the administrative cost of adding hosts is very 

low, which is probably more important 
–Plug-and-play kind of behavior…. 

 

 



Cost Effective 

• Cheaper than circuit switching at low end 

• More expensive than circuit switching at high end 

• Not a bad compromise: 
–Cheap where it counts (low-end) 

–More expensive for those who can pay…. 

13 



Resource Accountability 

• Failure! 
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Internet Motto 

We reject kings, presidents, and voting. We believe 

in rough consensus and running code.” 

 

      David Clark 



Real Goals 

• Build something that works! 

• Connect existing networks 

• Robust in face of failures  

• Support multiple types of delivery services 

• Accommodate a variety of networks 

• Allow distributed management 

• Easy host attachment 

• Cost effective 

• Allow resource accountability  
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Questions to think about…. 

• What priorities would a commercial design have? 
 

• What would the resulting design look like?  
 

• What goals are missing from this list? 
 



Modularity 



Modularity in Computer Science 

 

“Modularity based on abstraction 

is the way things get done” 

     --Barbara Liskov 
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The Role of Modularity 

• We can’t build big systems out of spaghetti code 
– Impossible to understand, debug 

–Hard to update 
 

• We need to limit the scope of changes, so that we 

can update system without rewriting it from scratch 
 

• Modularity is how we limit the scope of changes 
–And understand the system at a higher level 

20 



21 

Computer System Modularity 

• Partition system into modules 
–Each module has well-defined interface 

 

• Interfaces give flexibility in implementation 
–Changes have limited scope 
       

• Examples:  
– Libraries encapsulating set of functionality 
–Programming language abstracts away CPU 

 

• The trick is to find the right modularity 
–The interfaces should be long-lasting 

– If interfaces are changing often, modularity is wrong 

 

 



Finding the Right Modularity 

• Decompose problem into tasks or abstractions 
–Task: e.g., compute a function 

–Abstraction: e.g., provide reliable storage 
 

• Define a module for each task/abstraction 
– Involves defining a clean interface for each module 

– “Clean” means hiding unnecessary details 
 

• Implement system a few times: 
– If interfaces seem to hold, you are on the right track… 
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Network System Modularity 

• The need for modularity still applies 
–And is even more important! (why?) 

 

• Network implementations not just distributed 

across many lines of code 
–Normal modularity “organizes” that code 

 

• Networking is distributed across many machines 
–Hosts 

–Routers 



Network Modularity Decisions 

• How to break system into modules? 
–Classic decomposition into tasks 

 

• Where are modules implemented? 
–Hosts? 

–Routers? 

–Both? 
 

• Where is state stored? 
–Hosts? 

–Routers? 

–Both? 
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Leads to three design principles 

• How to break system into modules? 
–Layering 

 

• Where are modules implemented? 
–End-to-End Principle 

 

 
 

• Where is state stored? 
–Fate-Sharing 
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Layering 



Tasks in Networking 

• What does it take to send packets across country? 

 

• Simplistic decomposition: 
–Task 1: send along a single wire 

 

–Task 2: stitch these together to go across country 

 

• This gives idea of what I mean by decomposition 
–Next slide presents a much more detailed version 
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Tasks in Networking (bottom up) 

• Electrons on wire 

• Bits on wire 

• Packets on wire 

• Deliver packets across local network 
– Local addresses 

• Deliver packets across country 
–Global addresses 

• Ensure that packets get there 

• Do something with the data 
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Resulting Modules (layers) 

• Electrons on wire (contained in next layer) 

• Bits on wire (Physical) 

• Packets on wire (contained in next layer) 

• Deliver packets across local network (Datalink) 
– Local addresses 

• Deliver packets across country (Network) 
–Global addresses 

• Ensure that packets get there (Transport) 

• Do something with the data (Application) 
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Five Layers (top-down) 

• Application: Providing network support for apps 

• Transport (L4): (Reliable) end-to-end delivery 

• Network (L3): Global best-effort delivery 

• Datalink (L2): Local best-effort delivery 

• Physical: Bits on wire 
 

• Interactions between these components? 
–Do all components talk to each other? 

–Or are the components limited in their interactions? 

• Answer: they are strictly layered! 30 



Strictly Layered Dependencies 

Applications 

…built on… 

…built on… 

…built on… 

…built on… 

Reliable (or unreliable) transport 

Best-effort global packet delivery 

Best-effort local packet delivery 

Physical transfer of bits 



Three Observations 

• Each layer: 
–Depends on layer below 

–Supports layer above 

– Independent of others 
 

• Multiple versions in layer 
– Interfaces differ somewhat 

–Components pick which 

lower-level protocol to use 
 

• But only one IP layer 
–Unifying protocol 
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Layering Crucial to Internet’s Success 

• Innovation at most levels 
–Applications (lots) 

–Transport (few) 

–Datalink (few) 

–Physical (lots) 

 

• Innovation proceeded 

largely in parallel 
 

• Pursued by very different 

communities 
– Like PL and chip designs 33 



Distributing Layers Across Network 

• Layers are simple if only on a single machine 
– Just stack of modules interacting with those above/below 

 

• But we need to implement layers across machines 
–Hosts 

–Routers (switches) 
 

• What gets implemented where? 
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What Gets Implemented on Host? 

• Bits arrive on wire, must make it up to application 
 

• Therefore, all layers must exist at host! 
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What Gets Implemented on Router? 

• Bits arrive on wire 
–Physical layer necessary 

 

• Packets must be delivered to next-hop  
–Datalink layer necessary 

 

• Routers participate in global delivery  
–Network layer necessary 

 

• Routers don’t support reliable delivery  
–Transport layer (and above) not supported 
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What Gets Implemented on Switches? 

• Switches do what routers do, except they don’t 

participate in global delivery, just local delivery 
 

• They only need to support Physical and Datalink 
–Don’t need to support Network layer 

 

• Won’t focus on the router/switch distinction 
–When I say switch, I almost always mean router 

–Almost all boxes support network layer these days 
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Complicated Diagram 

HTTP 

TCP 

IP 

Ethernet 
interface 

HTTP 

TCP 

IP 

Ethernet 
interface 

IP IP 

Ethernet 
interface 

Ethernet 
interface 

SONET 
interface 

SONET 
interface 

host host 

router router 

HTTP message 

TCP segment 

IP packet IP packet IP packet 
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Simple Diagram 

• Lower three layers implemented everywhere 

• Top two layers implemented only at hosts 

Transport 

Network 

Datalink 

Physical 

Transport 

Network 

Datalink 

Physical 

Network 

Datalink 

Physical 

Application Application 

Host A Host B Router 
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Logical Communication 

• Layers interacts with peer’s corresponding layer 

Transport 

Network 

Datalink 

Physical 

Transport 

Network 

Datalink 

Physical 

Network 

Datalink 

Physical 

Application Application 

Host A Host B Router 
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Physical Communication 

• Communication goes down to physical network 

• Then from network peer to peer 

• Then up to relevant layer 

Transport 

Network 

Datalink 

Physical 

Transport 

Network 

Datalink 

Physical 

Network 

Datalink 

Physical 

Application Application 

Host A Host B Router 
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Layer Encapsulation 

Trans: Connection ID 

    Net: Source/Dest 

Link: Src/Dest 

Appl: Get index.html 

User A User B 

Common case: 20 bytes TCP header + 20 bytes IP header  

+ 14 bytes Ethernet header = 54 bytes overhead 



Dear John, 

 

Your days are numbered. 

 

  --Pat 

Example of Layering in the Real World 

• CEO A writes letter to CEO B 
–Folds letter and hands it to administrative aide 

• Aide: 
–Puts letter in envelope with CEO B’s full name 

–Takes to FedEx 

• FedEx Office 
–Puts letter in larger envelope 

–Puts name and street address on FedEx envelope 

–Puts package on FedEx delivery truck 

• FedEx delivers to other company 
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CEO 

Aide 

FedEx 

CEO 

Aide 

FedEx Location Fedex Envelope 

(FE) 

The Path of the Letter 
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Letter 

Envelope 

Semantic Content 

Identity 

“Peers” on each side understand the same things 

No one else needs to 

Lowest level has most packaging 



The Path Through FedEx 
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Truck 

Sorting 

Office 

Airport 

FE 

Sorting 

Office 

Airport 

Truck 

Sorting 

Office 

Airport 

Crate Crate 

FE 

New 

Crate 
Crate 

FE 

Higher “Stack” 

at Ends 
Partial “Stack” 

During Transit 

Deepest Packaging (Envelope+FE+Crate) 

at the Lowest Level of Transport 

Highest Level of  

“Transit Stack” 

 is Routing 
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Back to Networking Picture 

• Communication goes down to physical network 

• Then from network peer to peer 

• Then up to relevant layer 

Transport 

Network 

Datalink 

Physical 

Transport 

Network 

Datalink 

Physical 

Network 

Datalink 

Physical 

Application Application 

Host A Host B Router 
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Back to Encapsulation (Headers)  

Trans: Connection ID 

    Net: Source/Dest 

Link: Src/Dest 

Appl: Get index.html 

User A User B 

Common case: 20 bytes TCP header + 20 bytes IP header  

+ 14 bytes Ethernet header = 54 bytes overhead 



Five Minute Break…. 



Three Internet Design Principles 

• How to break system into modules? 
– Layering 

• Where are modules implemented? 
–End-to-End Principle 

• Where is state stored? 
–Fate-Sharing 
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The End-to-End Principle 

Everyone believes it, but no one knows 

what it means….. 
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Placing Network Functionality 

• Influential paper: “End-to-End Arguments in 

System Design” by Saltzer, Reed, and Clark (‘84) 
–End-to-end principle 

• Basic observation: some types of network 

functionality can only be correctly implemented 

end-to-end 

• In these cases, end hosts: 
–Can satisfy the requirement without network’s help 

–Must do so, since can’t rely on network’s help 

• Thus, don’t need to implement them in network 
–Debate about what the network does and doesn’t do… 
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Example: Reliable File Transfer 

• Solution 1: make each step reliable, and string them 

together to make reliable end-to-end process 

• Solution 2: allow steps to be unreliable, but do end-

to-end check and try again if necessary 

OS 

Appl. 

OS 

Appl. 

Host A Host B 

OK 



Discussion 

• Solution 1 cannot be made perfectly reliable 
–What happens if a network element misbehaves? 

–Receiver has to do the check anyway! 

 

• Solution 2 can also fail, but only if the end system 

itself fails (i.e., doesn’t follow its own protocol) 
 

• Solution 2 only relies on what it can control 
–The endpoint behavior 

• Solution 1 requires endpoints trust other elements 
–That’s not what reliable means! 
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Robust (From Clark’s Paper) 

• As long as the network is not partitioned, two 

endpoints should be able to communicate 

• Failures (excepting network partition) should not 

interfere with endpoint semantics 
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Question? 

• Should you ever implement reliability in network? 
 

• Perhaps, if needed for reasonable efficiency 
–Don’t aim for perfect reliability, but ok to reduce error 

rate 

 

• If individual links fail 10% of the time, and are 

traversing 10 links, then E2E error rate is 65% 
 

• Implementing one retransmission on links 
– Link error rate reduced to 1%, E2E error rate is 9.5% 
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Back to the End-to-End Principle 

Implementing such functionality in the network: 

• Doesn’t reduce host implementation complexity 

• Does increase network complexity 

• Often imposes delay/overhead on all applications, 

even if they don’t need functionality 

• However, implementing in network can enhance 

performance in some cases 
–E.g., very lossy link 

• Three interpretations of the end-to-end principle 
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“Only-if-Sufficient” Interpretation 

 

• Don’t implement a function at the lower levels of 

the system unless it can be completely 

implemented at this level 

 

• Unless you can relieve the burden from hosts, 

don’t bother 
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“Only-if-Necessary” Interpretation 

 

• Don’t implement anything in the network that can 

be implemented correctly by the hosts 
–E.g., multicast 

 

• Make network layer absolutely minimal 
–This E2E interpretation trumps performance issues 

– Increases flexibility, since lower layers stay simple 



59 

“Only-if-Useful” Interpretation 

 

• If hosts can implement functionality correctly, 

implement it in a lower layer only as a performance 

enhancement 

• But do so only if it does not impose burden on 

applications that do not require that functionality 



What Does E2E Principle Ignore? 

• There are other stakeholders besides users 
– ISP might care about the good operation of their network 

–Various commercial entities 

–Money-chain might require insertion into the network 

 

• The need for middlebox functionality 
–Some functions that, for management reasons, are more 

easily done in the network. 
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Three Internet Design Principles 

• How to break system into modules? 
– Layering 

• Where are modules implemented? 
–End-to-End Principle 

• Where is state stored? 
–Fate-Sharing 
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Fate-Sharing 



Fate-Sharing 

• Note that E2E principles relied on “fate-sharing” 
– Invariants break only when endpoints themselves break 

–Minimize dependence on other network elements 

 

• This should dictate placement of storage 
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General Principle: Fate-Sharing 

• When storing state in a distributed system, co-

locate it with entities that rely on that state 

• Only way failure can cause loss of the critical state 

is if the entity that cares about it also fails ... 
–… in which case it doesn’t matter 

• Often argues for keeping network state at end 

hosts rather than inside routers 
– In keeping with End-to-End principle 

–E.g., packet-switching rather than circuit-switching 

–E.g., NFS file handles, HTTP “cookies” 



A Cynical View of Distributed Systems 

“A distributed system is one in which the failure of a 

computer you didn't even know existed can render 

your own computer unusable” 
     ---Leslie Lamport 
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Decisions and Their Principles 

• How to break system into modules 
–Dictated by Layering 

 

• Where modules are implemented 
–Dictated by End-to-End Principle 

 

• Where state is stored 
–Dictated by Fate-Sharing 
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Question 

• If reliability is implemented by the ends, how is it 

done? 

 

• That’s the subject of the next lecture! 
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