
1

Reliable Transport: The Prequel

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Question

• How many people have not yet participated?

2

Don’t be intimidated….

• Wide spectrum of backgrounds

• But that’s just a head start in context, not content

• When we get to the real algorithms, everyone will

be on the same page

3

Don’t parse my words too carefully

• “Networking” is not a set of precise rules
– It is a state of mind….

• The principles of networking help you build

scalable and robust systems
–But they don’t provide a detailed instruction manual

4

Outline for Today

• Fate Sharing

• Course So Far

• Reliable Delivery

5

Decisions and Their Principles

• How to break system into modules
–Dictated by Layering

• Where modules are implemented
–Dictated by End-to-End Principle

• Where state is stored
–Dictated by Fate-Sharing

6

Fate-Sharing

Fate-Sharing

• Note that E2E principle relied on “fate-sharing”
– Invariants break only when endpoints themselves break

–Minimize dependence on other network elements

• This should also dictate placement of storage

8

9

General Principle: Fate-Sharing

• When storing state in a distributed system, co-

locate it with entities that rely on that state

• Only way failure can cause loss of the critical state

is if the entity that cares about it also fails ...
–… in which case it doesn’t matter

• Often argues for keeping network state at end

hosts rather than inside routers
– In keeping with End-to-End principle

–E.g., packet-switching rather than circuit-switching

–E.g., NFS file handles, HTTP “cookies”

A Cynical View of Distributed Systems

“A distributed system is one in which the failure of a

computer you didn't even know existed can render

your own computer unusable”
 ---Leslie Lamport

• This is precisely what fate-sharing is trying to

avoid…..

10

The Course So Far

We Are In the “Conceptual” Phase

• Three phases to course:
–Basic concepts

–Making these concepts real

–Various topics

• The conceptual phase has three steps

12

First Step: Basic Decisions

• Packet Switching winner over circuit switching

• Best-effort service model

13

Second Step: Architectural Principles

• Layering

• End-to-End Principle

• Fate-Sharing

14

Third Step: Design Challenges

• Let’s go layer by layer
–Physical

–Datalink

–Network

–Transport

–Application

• What function does each layer need to implement?

15

Two Layers We Don’t Worry About

• Physical:
–Technology dependent

– Lots of possible solutions

–Not specific to the Internet

• Application:
–Application-dependent

– Lots of possible solutions

16

Datalink and Network Layers

• Both support best-effort delivery
–Datalink over local scope

–Network over global scope

• Key challenge: scalable, robust routing
–How to direct packets to destination

17

Transport Layer

• Provide reliable delivery over unreliable network

18

We Only Have Two Design Challenges

• Routing: to be covered next week (+project 2)

• Reliable delivery: to be covered today (+project 1)

• You will then know everything you need to know
–Conceptually…..

• Lecture on “missing pieces” will complete picture

19

Purpose of Today

• Understand reliable transport conceptually
–What are the fundamental aspects of reliable transport?

• The goal is not to understand TCP
–TCP involves lots of detailed mechanisms, covered later

• Ground rules for discussion:
–No mention of TCP

–No mention of detailed practical issues

–Focus only on “ideal” world of packets and links

20

Two Pedagogical Approaches

1. Understand why given algorithm works (textbook)

2. Understand the space of possible algorithms

• The first: you understand why the Internet works
–And get a job at Cisco…

• The second: you could design the next Internet
–Or start the next Cisco...

• The second is what we do at Berkeley!
21

You Must Think For Yourself

• Today’s lecture requires you to engage
–How would I design a reliable service?

• I will ask questions, want you to think about them
– If you think you already know this, you are wrong

– If you think you don’t know enough, you are wrong

– If you think you can learn this asleep, you are wrong

22

Reliable Delivery

Best Effort Service

• Packets can be lost

• Packets can be corrupted

• Packets can be reordered

• Packets can be delayed

• Packets can be duplicated

• ….

How can you possibly make anything

work with such a service model?

24

Making Best Effort Work

• Engineer network so that average case is decent
–No guarantees, but you must try….

• Engineer apps so they can tolerate the worst case
–They don’t have to thrive, they just can’t die

• A classical case of architecting for flexibility
–Engineering for performance

• Internet enabled app innovation and competition
–Only the hardy survived, and doomsayers were ignored

25

Reliable Transport Is Necessary

• Some app semantics involve reliable transport
–E.g., file transfer

• How can we build a reliable transport service on

top of an arbitrarily unreliable packet delivery?

• A central challenge in bridging the gap between
– the abstractions application designers want

– the abstractions networks can easily support

26

Important Distinctions

• Functionality implemented in network
–Keep minimal (easy to build, broadly applicable)

• Functionality implemented in the application
–Keep minimal (easy to write)

–Restricted to application-specific functionality

• Functionality implemented in the “network stack”
–The shared networking code on the host

–This relieves burden from both app and network

–This is where reliability belongs

27

Two Different Statements

• Applications need reliable service
–This means that the application writers should be able to

assume this, to make their job easier

• The network must provide reliable service
–This contends that end hosts cannot implement this

functionality, so the network must provide it

• Today we are making the first statement, and

refuting the second…

28

Challenge for Today

• Building a stack that supports reliable transfer
–So that individual applications don’t need to deal with

packet losses, etc.

29

Fundamental Systems Question

• How to build reliable services over unreliable

components
–File systems, databases, etc.

• Reliable transport is the simplest example of this

30

Four Goals For Reliable Transfer

• Correctness

• Timeliness
–Minimize time until data is transferred

• Efficiency
–Would like to minimize use of bandwidth

– i.e., don’t send too many packets

• “Fairness”
–How well does it play with others?

31

Start with transfer of a single packet

• We can later worry about larger files, but in the

beginning it is cleaner to focus on this simple case

32

Correctness Condition?

• Packet is delivered to receiver.

33

WRONG!

• What if network is partitioned?

34

Correctness Condition?

• Packet is delivered to receiver if and only if it was

possible to deliver packet.

35

WRONG!

• If the network is only available at one instant of

time, only an Oracle would know when to send.

36

Correctness Condition?

• Resend packet if and only if the previous

transmission was lost or corrupted

37

WRONG!

• Impossible
– “Coordinated Attack” over an unreliable network

• Consider two cases:
–Packet delivered; all packets from receiver are dropped

–Packet dropped; all packets from receiver are dropped

• They are indistinguishable to sender
–Does it resend, or not?

38

Correctness Condition?

• Packet is always resent if the previous

transmission was lost or corrupted.

• Packet may be resent at other times.

• Note:
–This invariant gives us a simple criterion for deciding if

an implementation is correct

–Efficiency and timeliness are separate criteria….

39

We have correctness condition

• How do we achieve it?

40

Two Choices for Corruption

• Have applications do integrity check
– Ignore it in transport protocol

• Do per-packet checksum
–Won’t be perfectly reliable, still have app-level check

–So why do it? What does the E2E principle say?

• This is all implemented in the ends!
–But E2E reasoning about correctness still applies

• Today, we will ignore corruption, treat it as loss
41

Solution v1

• Send every packet as often and fast as you can….

• Definitely correct

• Optimal timeliness

• Infinitely bad efficiency

42

What’s Missing?

• Feedback from receiver!

• If receiver does not respond, no way for sender to

tell when to stop resending.
–Cannot achieve efficiency + correctness w/out feedback.

43

Forms of Feedback

• ACK: Yes, I got the packet

• NACK: No, I did not get the packet

• When is NACK a natural idea?
–Corruption

• Ignore NACKs for rest of lecture….

44

Solution v2

• Resend packet until you get an ACK
–And receiver resends ACKs until data flow stops

• Optimal timeliness

• Efficiency: how much bandwidth is wasted?
 ~ B x RTT

– ok for short latencies

– bad for long latencies

45

Solution v3

• Send packet
–Set a timer

• If receive ACK: done

• If no ACK by time timer expires, resend.

• Timeliness would argue for small timeout

• Efficiency would argue for larger timeout
–May want to increase timer each time you try

–May want to cap the number of retries

46

Have “solved” the single packet case

• Send packet

• Set timer

• If no ACK when timer goes off, resend packet
–And reset timer

47

5 Minute Break

48

Multiple Packets

• Service Model: reliable stream of packets
–Hand up contiguous block of packets to application

• Why not use single-packet solution?
–Only one packet in flight at any time

–Very poor timeliness (but very good efficiency)

• Use window-based approach
–Allow for W packets in-flight at any time (unack’ed)

–Sliding Window implies W packets are contiguous
 Makes sense if window is related to receiver buffer (later)

49

Window-based Algorithms

• See textbook or the web for animations….
–Will implement in project

• Very simple concept:
–Send W packets

–When one gets ACK’ed, send the next packet in line

• Will consider several variations….
–But first….

50

How big should the window be?

• Windows serve three purposes
–Taking advantage of the bandwidth on the link

– Limiting the bandwidth used (congestion control)

– Limiting the amount of buffering needed at the receiver

• If we ignore all but the first goal, then we want to

keep the sender always sending (in the ideal case)
–RTT: sending first packet until receiving first ACK

Condition: RTT x B ~ W x Packet Size

51

Design Considerations

• Nature of feedback

• Detection of loss

• Response to loss

52

Possible Feedback From Receiver

• Ideas?

53

ACK Individual Packets

• Strengths:
–Know fate of each packet

– Impervious to reordering

–Simple window algorithm
 W independent single-packet algorithms

 When one finishes, grab next packet

• Weaknesses?
– Loss of ACK packet requires a retransmission

54

Cumulative ACK

• ACK the highest sequence number for which all

previous packets have been received
– Implementations often send back “next expected

packet”, but that’s just a detail

• Strengths:
–Recovers from lost ACKs

• Weaknesses?
–Confused by reordering

– Incomplete information about which packets have arrived

 55

Full Information

• List all packets that have been received
–Give highest cumulative ACK plus any additional packets

–Feasible if only small holes

• Strengths:
–As much information as you could hope for

–Resilient form of individual ACKs

• Weaknesses?
–Could require sizable overhead in bad cases

56

Detecting Loss

• If packet times out, assume it is lost….

• How else can you detect loss?

57

Loss with individual ACKs

• Assume packet 5 is lost, but no others

• Stream of ACKs will be:
– 1

– 2

– 3

– 4

– 6

– 7

– 8

–….

 58

Loss with individual ACKs

• Could resend packet when k “subsequent packets”

are received

• Response to loss:
–Resend missing packet

–Continue window based protocol

59

Loss with full information

• Same story, except that the “hole” is explicit

• Stream of ACKs will be:
–Up to 1

–Up to 2

–Up to 3

–Up to 4

–Up to 4, plus 6

–Up to 4, plus 6,7

–Up to 4, plus 6,7,8

–….

 60

Loss with full information

• Could resend packet when k “subsequent packets”

are received

• Response to loss:
–Resend missing packet

–Continue window based protocol

61

Loss with cumulative ACKs

• Assume packet 5 is lost, but no others

• Stream of ACKs will be:
– 1

– 2

– 3

– 4

– 4 (when 6 arrives)

– 4 (when 7 arrives)

– 4 (when 8 arrives)

–….

 62

Loss with cumulative ACKs

• “Duplicate ACKs” are a sign of an isolated loss
–The lack of ACK progress means 5 hasn’t been

delivered

–The stream of ACKs means that some packets are being

delivered

• Therefore, could trigger resend upon receiving k

duplicate ACKs

• But response to loss is trickier….

63

Loss with cumulative ACKs

• Two choices:
–Send missing packet and optimistically assume that

subsequent packets have arrived
 i.e., increase W by the number of Dup ACKs

–Send missing packet, and wait for ACK

• Timeout-detected losses also problematic
– If packet 5 times out, packet 6 is about to time out also

–Do you resend both?

–Do you resend 5 and wait?

–….

64

Go-Back-N

• Simple algorithm (not advisable, but simple)

• Sliding window (only W contiguous packets)

• When a loss is detected by timeout, resend all W

packets starting with loss

• Receiver discards out-of-order packets

65

All the bad things best effort can do…

• Packets can be lost

• Packets can be corrupted

• Packets can be reordered

• Packets can be delayed

• Packets can be duplicated

66

Effect of Reordering?

• Individual ACKs: not a problem

• Full information: not a problem

• Cumulative ACKs: create Dup ACKs

67

Effect of Long Delays?

• Possible timeouts

68

Effect of Duplication?

• Produce Duplicate ACKs
–Could be confused for loss with cumulative ACKs

–But duplication is rare….

69

Possible Design

• Full information ACKs

• Window-based, with retransmissions after:
–Timeout

–K subsequent ACKs

• This is correct, timely, efficient

70

Fairness?

• Adjust W based on losses….

• In a way that flows receive same shares

• Short version:
– Loss: cut W by 2

–Successful receipt of window: W increased by 1

71

Summary

• Window-based flow control separates concerns
–Size of W:

–Nature of feedback:

–Response to loss:

• Can design each aspect relatively independently

• Can be correct, efficient, timely, and fair

72

Are We Done?

• There are other approaches….

73

Alternate Strategy: Rateless Codes

• Use special encoding
–Receipt of any set of M packets allows you to recover file

–Where M is close to the size of the original file

• Receiver only sends ACK when M are received
–Sender keeps sending until receives ACK

• Timely, Correct
–How efficient is it?

74

The Paradox of Internet Traffic

• The majority of flows are short
–A few packets

• The majority of bytes are in long flows
–MB or more

• And this trend is accelerating…

75

Inefficiency

• The wasted bandwidth ~ BxRTT

• For long flows, this is small compared to total file

• For short flows, this is large compared to file
–But most of the bandwidth is in long flows!

• This is not a terrible idea

• What is missing?
76

Next Lecture

• Routing

77

