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Question 

• How many people have not yet participated? 
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Don’t be intimidated…. 

• Wide spectrum of backgrounds 
 

• But that’s just a head start in context, not content 
 

• When we get to the real algorithms, everyone will 

be on the same page 
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Don’t parse my words too carefully 

• “Networking” is not a set of precise rules 
– It is a state of mind…. 

 

• The principles of networking help you build 

scalable and robust systems 
–But they don’t provide a detailed instruction manual 
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Outline for Today 

• Fate Sharing  
 

• Course So Far 
 

• Reliable Delivery 
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Decisions and Their Principles 

• How to break system into modules 
–Dictated by Layering 

 

• Where modules are implemented 
–Dictated by End-to-End Principle 

 

• Where state is stored 
–Dictated by Fate-Sharing 
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Fate-Sharing 



Fate-Sharing 

• Note that E2E principle relied on “fate-sharing” 
– Invariants break only when endpoints themselves break 

–Minimize dependence on other network elements 

 

• This should also dictate placement of storage 
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General Principle: Fate-Sharing 

• When storing state in a distributed system, co-

locate it with entities that rely on that state 

• Only way failure can cause loss of the critical state 

is if the entity that cares about it also fails ... 
–… in which case it doesn’t matter 

• Often argues for keeping network state at end 

hosts rather than inside routers 
– In keeping with End-to-End principle 

–E.g., packet-switching rather than circuit-switching 

–E.g., NFS file handles, HTTP “cookies” 



A Cynical View of Distributed Systems 

“A distributed system is one in which the failure of a 

computer you didn't even know existed can render 

your own computer unusable” 
     ---Leslie Lamport 

 

 

• This is precisely what fate-sharing is trying to 

avoid….. 
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The Course So Far 



We Are In the “Conceptual” Phase 

• Three phases to course: 
–Basic concepts 

–Making these concepts real 

–Various topics 

 

• The conceptual phase has three steps 
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First Step: Basic Decisions 

• Packet Switching winner over circuit switching 
 

• Best-effort service model 
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Second Step: Architectural Principles 

• Layering 

 

• End-to-End Principle 

 

• Fate-Sharing 
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Third Step: Design Challenges 

• Let’s go layer by layer 
–Physical 

–Datalink 

–Network 

–Transport 

–Application 

 

• What function does each layer need to implement? 
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Two Layers We Don’t Worry About 

• Physical: 
–Technology dependent 

– Lots of possible solutions 

–Not specific to the Internet 

 

• Application: 
–Application-dependent 

– Lots of possible solutions 
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Datalink and Network Layers 

• Both support best-effort delivery 
–Datalink over local scope 

–Network over global scope 
 

• Key challenge: scalable, robust routing 
–How to direct packets to destination 
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Transport Layer 

• Provide reliable delivery over unreliable network 
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We Only Have Two Design Challenges 

• Routing: to be covered next week (+project 2) 
 

• Reliable delivery: to be covered today (+project 1) 
 

• You will then know everything you need to know 
–Conceptually….. 

 

• Lecture on “missing pieces” will complete picture 
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Purpose of Today 

• Understand reliable transport conceptually 
–What are the fundamental aspects of reliable transport? 

 

• The goal is not to understand TCP 
–TCP involves lots of detailed mechanisms, covered later 

 

• Ground rules for discussion: 
–No mention of TCP 

–No mention of detailed practical issues 

–Focus only on “ideal” world of packets and links 
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Two Pedagogical Approaches 

1. Understand why given algorithm works (textbook) 

2. Understand the space of possible algorithms 
 

• The first: you understand why the Internet works 
–And get a job at Cisco… 

 

• The second: you could design the next Internet 
–Or start the next Cisco... 

 

• The second is what we do at Berkeley! 
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You Must Think For Yourself 

• Today’s lecture requires you to engage 
–How would I design a reliable service? 

 

• I will ask questions, want you to think about them 
– If you think you already know this, you are wrong 

– If you think you don’t know enough, you are wrong 

– If you think you can learn this asleep, you are wrong 
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Reliable Delivery 



Best Effort Service 

• Packets can be lost 

• Packets can be corrupted 

• Packets can be reordered 

• Packets can be delayed 

• Packets can be duplicated 

• …. 

How can you possibly make anything 

work with such a service model? 
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Making Best Effort Work 

• Engineer network so that average case is decent 
–No guarantees, but you must try…. 

 

• Engineer apps so they can tolerate the worst case 
–They don’t have to thrive, they just can’t die 

 

• A classical case of architecting for flexibility 
–Engineering for performance 

 

• Internet enabled app innovation and competition 
–Only the hardy survived, and doomsayers were ignored 
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Reliable Transport Is Necessary 

• Some app semantics involve reliable transport  
–E.g., file transfer 

 

• How can we build a reliable transport service on 

top of an arbitrarily unreliable packet delivery? 
 

• A central challenge in bridging the gap between 
– the abstractions application designers want 

– the abstractions networks can easily support 
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Important Distinctions 

• Functionality implemented in network 
–Keep minimal (easy to build, broadly applicable) 

 

• Functionality implemented in the application 
–Keep minimal (easy to write) 

–Restricted to application-specific functionality 

 

• Functionality implemented in the “network stack” 
–The shared networking code on the host 

–This relieves burden from both app and network 

–This is where reliability belongs 
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Two Different Statements 

• Applications need reliable service 
–This means that the application writers should be able to 

assume this, to make their job easier 

 

• The network must provide reliable service 
–This contends that end hosts cannot implement this 

functionality, so the network must provide it 

 

• Today we are making the first statement, and 

refuting the second… 
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Challenge for Today 

• Building a stack that supports reliable transfer 
–So that individual applications don’t need to deal with 

packet losses, etc. 
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Fundamental Systems Question 

• How to build reliable services over unreliable 

components 
–File systems, databases, etc. 

 

• Reliable transport is the simplest example of this 
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Four Goals For Reliable Transfer 

• Correctness 
 

• Timeliness 
–Minimize time until data is transferred 

 

• Efficiency 
–Would like to minimize use of bandwidth 

– i.e., don’t send too many packets 

 

• “Fairness” 
–How well does it play with others? 
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Start with transfer of a single packet 

• We can later worry about larger files, but in the 

beginning it is cleaner to focus on this simple case 
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Correctness Condition? 

• Packet is delivered to receiver. 
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WRONG! 

• What if network is partitioned? 
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Correctness Condition? 

• Packet is delivered to receiver if and only if it was 

possible to deliver packet. 
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WRONG! 

• If the network is only available at one instant of 

time, only an Oracle would know when to send. 
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Correctness Condition? 

• Resend packet if and only if the previous 

transmission was lost or corrupted 
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WRONG! 

• Impossible 
– “Coordinated Attack” over an unreliable network 

 

• Consider two cases: 
–Packet delivered; all packets from receiver are dropped 

–Packet dropped; all packets from receiver are dropped 

 

• They are indistinguishable to sender 
–Does it resend, or not? 
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Correctness Condition? 

• Packet is always resent if the previous 

transmission was lost or corrupted. 

• Packet may be resent at other times. 

 

• Note:  
–This invariant gives us a simple criterion for deciding if 

an implementation is correct 

–Efficiency and timeliness are separate criteria…. 
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We have correctness condition 

• How do we achieve it? 
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Two Choices for Corruption 

• Have applications do integrity check 
– Ignore it in transport protocol 

 

• Do per-packet checksum 
–Won’t be perfectly reliable, still have app-level check 

–So why do it? What does the E2E principle say? 
 

• This is all implemented in the ends! 
–But E2E reasoning about correctness still applies 

 

• Today, we will ignore corruption, treat it as loss 
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Solution v1 

• Send every packet as often and fast as you can…. 

 

• Definitely correct 

• Optimal timeliness 

• Infinitely bad efficiency 
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What’s Missing? 

• Feedback from receiver! 

 

• If receiver does not respond, no way for sender to 

tell when to stop resending. 
–Cannot achieve efficiency + correctness w/out feedback. 
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Forms of Feedback 

• ACK: Yes, I got the packet 
 

• NACK: No, I did not get the packet 
 

 

• When is NACK a natural idea? 
–Corruption 

 

• Ignore NACKs for rest of lecture…. 
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Solution v2 

• Resend packet until you get an ACK 
–And receiver resends ACKs until data flow stops 

 

• Optimal timeliness 

• Efficiency: how much bandwidth is wasted? 
        ~ B x RTT 

– ok for short latencies 

– bad for long latencies 
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Solution v3 

• Send packet 
–Set a timer 

• If receive ACK: done 

• If no ACK by time timer expires, resend. 

 

• Timeliness would argue for small timeout 

• Efficiency would argue for larger timeout 
–May want to increase timer each time you try 

–May want to cap the number of retries 
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Have “solved” the single packet case 

• Send packet 

• Set timer 

• If no ACK when timer goes off, resend packet 
–And reset timer 
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5 Minute Break 
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Multiple Packets 

• Service Model: reliable stream of packets 
–Hand up contiguous block of packets to application 

 

• Why not use single-packet solution? 
–Only one packet in flight at any time 

–Very poor timeliness (but very good efficiency) 

 

• Use window-based approach 
–Allow for W packets in-flight at any time (unack’ed) 

–Sliding Window implies W packets are contiguous 
 Makes sense if window is related to receiver buffer (later) 
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Window-based Algorithms 

• See textbook or the web for animations…. 
–Will implement in project 

 

• Very simple concept: 
–Send W packets 

–When one gets ACK’ed, send the next packet in line 

 

• Will consider several variations…. 
–But first…. 
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How big should the window be? 

• Windows serve three purposes 
–Taking advantage of the bandwidth on the link 

– Limiting the bandwidth used (congestion control) 

– Limiting the amount of buffering needed at the receiver 

 

• If we ignore all but the first goal, then we want to 

keep the sender always sending (in the ideal case) 
–RTT: sending first packet until receiving first ACK 

 

Condition: RTT x B ~ W x Packet Size 
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Design Considerations 

• Nature of feedback 
 

• Detection of loss 
 

• Response to loss 
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Possible Feedback From Receiver 

• Ideas? 
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ACK Individual Packets 

• Strengths: 
–Know fate of each packet 

– Impervious to reordering 

–Simple window algorithm 
 W independent single-packet algorithms 

 When one finishes, grab next packet 

 

• Weaknesses? 
– Loss of ACK packet requires a retransmission 
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Cumulative ACK 

• ACK the highest sequence number for which all 

previous packets have been received 
– Implementations often send back “next expected 

packet”, but that’s just a detail 

 

• Strengths: 
–Recovers from lost ACKs 

 

• Weaknesses? 
–Confused by reordering 

– Incomplete information about which packets have arrived 

 55 



Full Information 

• List all packets that have been received 
–Give highest cumulative ACK plus any additional packets 

–Feasible if only small holes 

 

• Strengths: 
–As much information as you could hope for 

–Resilient form of individual ACKs 

• Weaknesses? 
–Could require sizable overhead in bad cases 
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Detecting Loss 

• If packet times out, assume it is lost…. 
 

• How else can you detect loss? 
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Loss with individual ACKs 

• Assume packet 5 is lost, but no others 

 

• Stream of ACKs will be: 
– 1 

– 2 

– 3 

– 4 

– 6 

– 7 

– 8 

–…. 
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Loss with individual ACKs 

• Could resend packet when k “subsequent packets” 

are received 
 

• Response to loss: 
–Resend missing packet 

–Continue window based protocol 
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Loss with full information 

• Same story, except that the “hole” is explicit  
 

• Stream of ACKs will be: 
–Up to 1 

–Up to 2 

–Up to 3 

–Up to 4 

–Up to 4, plus 6 

–Up to 4, plus 6,7 

–Up to 4, plus 6,7,8 

–…. 
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Loss with full information 

• Could resend packet when k “subsequent packets” 

are received 
 

• Response to loss: 
–Resend missing packet 

–Continue window based protocol 
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Loss with cumulative ACKs 

• Assume packet 5 is lost, but no others 

 

• Stream of ACKs will be: 
– 1 

– 2 

– 3 

– 4 

– 4 (when 6 arrives) 

– 4 (when 7 arrives) 

– 4 (when 8 arrives) 

–…. 
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Loss with cumulative ACKs 

• “Duplicate ACKs” are a sign of an isolated loss 
–The lack of ACK progress means 5 hasn’t been 

delivered 

–The stream of ACKs means that some packets are being 

delivered 

 

• Therefore, could trigger resend upon receiving k 

duplicate ACKs 
 

• But response to loss is trickier…. 
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Loss with cumulative ACKs 

• Two choices: 
–Send missing packet and optimistically assume that 

subsequent packets have arrived 
 i.e., increase W by the number of Dup ACKs 

–Send missing packet, and wait for ACK 

 

• Timeout-detected losses also problematic 
– If packet 5 times out, packet 6 is about to time out also 

–Do you resend both? 

–Do you resend 5 and wait? 

–…. 
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Go-Back-N 

• Simple algorithm (not advisable, but simple) 

• Sliding window (only W contiguous packets) 

• When a loss is detected by timeout, resend all W 

packets starting with loss 

• Receiver discards out-of-order packets 
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All the bad things best effort can do… 

• Packets can be lost 

• Packets can be corrupted 

• Packets can be reordered 

• Packets can be delayed 

• Packets can be duplicated 
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Effect of Reordering? 

• Individual ACKs: not a problem 

• Full information: not a problem 

• Cumulative ACKs: create Dup ACKs 
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Effect of Long Delays? 

• Possible timeouts 
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Effect of Duplication? 

• Produce Duplicate ACKs 
–Could be confused for loss with cumulative ACKs 

–But duplication is rare…. 
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Possible Design 

• Full information ACKs 

• Window-based, with retransmissions after: 
–Timeout 

–K subsequent ACKs 

• This is correct, timely, efficient 
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Fairness? 

• Adjust W based on losses…. 
 

• In a way that flows receive same shares 
 

• Short version: 
– Loss: cut W by 2 

–Successful receipt of window: W increased by 1 
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Summary 

• Window-based flow control separates concerns 
–Size of W: 

–Nature of feedback: 

–Response to loss: 

 

• Can design each aspect relatively independently 
 

• Can be correct, efficient, timely, and fair 
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Are We Done? 

• There are other approaches…. 
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Alternate Strategy: Rateless Codes 

• Use special encoding 
–Receipt of any set of M packets allows you to recover file 

–Where M is close to the size of the original file 

 

• Receiver only sends ACK when M are received 
–Sender keeps sending until receives ACK 

 

• Timely, Correct 
–How efficient is it? 

74 



The Paradox of Internet Traffic 

• The majority of flows are short 
–A few packets 

 

• The majority of bytes are in long flows 
–MB or more 

 

• And this trend is accelerating… 
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Inefficiency 

• The wasted bandwidth ~ BxRTT 
 

• For long flows, this is small compared to total file 
 

• For short flows, this is large compared to file 
–But most of the bandwidth is in long flows! 

 

• This is not a terrible idea 
 

• What is missing? 
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Next Lecture 

• Routing 
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