
1

The Fundamentals of Routing

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Announcements

• Participation numbers: we have a problem….
– 30 have sent mail about participation

– 330 are enrolled in the course

• Homework #1 due in a week
–Get it done soon, so you can focus on project

–Reminder: work on homework by yourself…..

• Project 1 is out today!
–Due in two weeks, get started soon!

–Colin will give a quick introduction

2

Project 1

• Goal: implement reliable transport protocol

• Structure of project:
–We give you the receiver

–You implement the sender

• Receiver sends back cumulative ACKs
–You must figure out how to use these effectively

3

4

Grading Policy

The grades will be based on correctness and

performance, not adherence to a specified

algorithm.

• Do you reliably deliver the file?

• Is it accomplished in a timely manner?

• And with a reasonable number of packets?

5

Grading Policy

• We provide you with a testing framework, including

one test case

• You need to implement further tests!

• We will run our own tests on your code to generate

a grade

6

 Extra Credit

• You can implement optional “bells and whistles” for

extra credit

• Extra credit can boost your grade by up to 10%:

5% for the first bell/whistle, 5% for the second

7

Collaboration Policy

Projects are designed to be solved independently,

but you may work with a partner if you wish (but at

most two people can work together). Grading will

remain the same whether you choose to work alone

or with a partner; both partners will receive the

same grade regardless of the distribution of work

between the two partners (so choose a partner

wisely!).

8

Collaboration Policy (continued)

You may not share code with any classmates other

than your partner. You may discuss the assignment

requirements or general programming decisions

(e.g., what data structures were used to store

routing tables) - away from a computer and

without sharing code - but you should not discuss

the detailed nature of your solution (e.g., what

algorithm was used to compute the routing table).

9

Colin is in charge of project 1

• General questions
–Ask your TA

• Detailed questions about the project code
–Ask Colin (cs@cs.berkeley.edu)

10

11

Questions on Project 1?

Outline

• Review of reliable transport

• Basics of routing and forwarding

• Correctness condition for routing

• Routing on spanning trees

• Preview of next lecture

12

13

Review of Reliable Transport

Review of Reliable Transport

• Restatement of correctness condition:

A transport mechanism is “reliable” if and only if

it resends all dropped or corrupted packets.

• Sufficient (“if”): algorithm will always keep trying to

deliver undelivered packets

• Necessary (“only if”): if it ever lets a packet go

undelivered without trying again, it isn’t reliable

• Note: a transport mechanism can “give up”,

but must announce this to application

14

Many Implementation Choices

• Feedback from receiver: ACKs vs NACKs
–Can NACKs alone achieve “correctness”?

–Can ACKs alone achieve “correctness”?

• Variations on ACKs
–Full information

– Individual packets

–Cumulative (project; TCP)

• When to resend
–Timeout

–Duplicate ACKs

–NACKs

15

Implementation Choices

• These implementation choices affect:
–Timeliness

–Efficiency

–Fairness

–….

• These are important concerns
–but correctness is more fundamental

• Design must start with correctness
–Can then “engineer” its performance with various hacks

–These hacks can be “fun” but don’t let them distract you
16

17

Routing

The Traditional Routing Curriculum

• Learning switches

• Link-state routing
–Dijkstra’s Algorithm

• Distance-vector routing
–Bellman-Ford

18

I have some bad news…..

• Don’t have anything interesting to say about routing

• Will follow standard curriculum
–Much of it covered in the text

• But will focus more on principles than details

• Will continue routing on Thursday…

19

20

Basics of Routing and Forwarding

Addressing (at a conceptual level)

• Assume all hosts have unique IDs (addresses)

• No particular structure to those IDs

• Later in course will talk about real IP addressing

21

Packets (at a conceptual level)

• Routing occurs at network and datalink layers

• Assume network/datalink packet headers contain:
–Source ID, Destination ID, and perhaps other information

22

Destination

Identifier

Source

Identifier

Payload

Why include

this?

23

Layering Diagram

• Why would you have return address in

network layer (or datalink layer)?

• Historical and network-level reasons….

Transport

Network

Datalink

Physical

Transport

Network

Datalink

Physical

Network

Datalink

Physical

Application Application

Host A Host B Router

Example of Network Graph

24

Router with 6 attached links

Router with 4 attached links

A Variety of Networks

• ISPs: carriers
–Backbone

–Edge (connecting to customers)

–Border (to other ISPs)

• Enterprises: companies, universities
–Core

–Edge (connecting to hosts)

–Border (to outside)

• Datacenters: massive collections of machines
–Aggregation and Core

–Top-of-Rack

–Border (to outside)

25

UUNET’s North American Network

26

Level3’s American Network

27

Enterprise Network

28

Berkeley’s Campus Network

29

Partial Datacenter Network

30

Switches

• Enterprise/Edge: typically 24 to 48 attached links

• Aggregation switches: 192 or more

• Backbone: typically fewer attached links

• Border: typically very few attached links

31

Switches/Routers

• Multiple attached links, often called “ports”
–Ports are typically duplex (incoming and outgoing)

o But in this picture will show them separately

– (Don’t confuse this notion of “port” with transport “ports”)

32

incoming links outgoing links Switch

Forwarding Decisions

• When packet arrives, must choose outgoing port

• Decision is based on routing state (table) in switch

33

incoming links outgoing links Switch

Consider

packet header

and routing

table

Forwarding Decisions

• Switches and routers make the following mapping:

PacketState + RoutingState OutgoingPort

• Most do so in single transmission time
–Forwarding decisions must be simple

• Assume forwarding decisions are deterministic
–Packets with same state always routed to same port

•

•

34

Packet State

• Destination ID

• Source ID

• Incoming Port (from switch, not packet header)

• Other packet header information?
– Ignore for now…

35

Forwarding Decision Dependencies

• Must depend on destination

• Could also depend on :
–Source: requires n2 state

– Input port: not clear what this buys you

–Other header information: ignore for now

• We will focus only on destination-based routing
–But first consider the alternative

36

Source/Destination-Based Routing

37

Paths from two different sources (to

same destination) can be very different

Destination-Based Routing

38

Paths from two different sources (to same

destination) must coincide once they overlap

Destination-Based Routing

• Paths to same destination never cross

• Once paths to destination meet, they never split

• Set of paths to destination create a “delivery tree”
–Must cover every node exactly once

–Spanning Tree rooted at destination

39

A “Delivery Tree” for a Destination

40

Assume Destination-Based Routing

• For rest of lecture (and course)…..

41

42

5 Minute Break

43

Validity of Routing State

Local and Global Routing State

• Local routing state is the state in a single router
–By itself, the state in a single router can’t be evaluated

– It must be evaluated in terms of the global context

• Global routing state means collection of routing

state in each of the routers
–Global state determines which paths packets take

–Will discuss later where this routing state comes from

44

“Valid” Routing State

• Global routing state is “valid” if it produces

forwarding decisions that always deliver packets to

their destinations
–Valid is my terminology, not standard

• Goal of routing protocols: compute valid state
–But how can you tell if routing state if valid?

• Need a succinct correctness condition for routing
–Suggestions?

45

Necessary and Sufficient Condition

• Global routing state is valid if and only if:
–There are no dead ends (other than destination)

–There are no loops

• A dead end is when there is no outgoing port
–A packet arrives, but the forwarding decision does not

yield any outgoing port

• A loop is when a packet cycles around the same

set of nodes forever

46

Wandering Packets

47

Packet reaches deadend and stops Packet falls into loop and never reaches destination

Necessary and Sufficient Condition

• Global routing state is valid if and only if:
–There are no dead ends (other than destination)

–There are no loops

48

Necessary (“only if”): Obvious

• If you run into a deadend before hitting destination,

you’ll never reach the destination

• If you run into a loop, you’ll never reach destination
–With deterministic forwarding, once you loop, you’ll loop

forever (assuming routing state is static)

49

Sufficient (“if”): Easy

• Assume no deadends, no loops

• Packet must keep wandering, without repeating
– If ever enter same switch from same port, will loop

–Because forwarding decisions are deterministic

• Only a finite number of possible ports for it to visit
– It cannot keep wandering forever without looping

–Must eventually hit destination

50

Checking Validity of Routing State

• Focus only on a single destination
– Ignore all other routing state

• Mark outgoing port with arrow
–There can only be one at each node

• Eliminate all links with no arrows

• Look at what’s left….

51

Example 1

52

Pick Destination

53

Put Arrows on Outgoing Ports

54

Remove Unused Links

55

Leaves Spanning Tree: Valid

Second Example

56

Second Example

57

Is this valid?

Lesson….

• Very easy to check validity of routing state for a

particular destination

• Deadends are obvious
–Node without outgoing arrow

• Loops are obvious
–Disconnected from rest of graph

58

59

Computing Routing State

Forwarding vs Routing

• Forwarding: “data plane”
–Directing a data packet to an outgoing link

– Individual router using routing state

• Routing: “control plane”
–Computing paths the packets will follow

–Routers talking amongst themselves

– Jointly creating the routing state

• Two very different timescales….
–Forwarding: single packet transmission times: μs

–Routing: can be seconds

– 6 orders of magnitude!

60

The “Secret” of Routing

• Avoiding deadends is easy

• Avoiding loops is hard

• The key difference between routing protocols

is how they avoid loops!
–Don’t focus on details of mechanisms

– Just ask “how are loops avoided?”

61

How Can You Avoid Loops?

• Easiest way: Restrict topology to spanning tree
– If the topology has no loops, packets can’t loop!

– (without making a u-turn, which can be locally prevented)

62

63

Routing on Spanning Tree

Easiest Way to Avoid Loops

• Use a topology where loops are impossible!

• Take arbitrary topology

• Build spanning tree (algorithm covered later)
– Ignore all other links (as before)

• Only one path to destinations on spanning trees
–So don’t have to worry about loops!

64

Consider previous graph

65

A Spanning Tree

66

Another Spanning Tree

67

Yet Another Spanning Tree

68

Routing on a Spanning Tree

• There is only one path from source to destination

• How do you find that path?

• Why bother? Just send packets along all paths
–No packets will loop, but some will hit deadends

–But one (and exactly one) will reach destination

69

Flooding on a Spanning Tree

• If you want to send a packet that will reach all

nodes, then switches can use the following rule:
– Ignoring all ports not on spanning tree!

• Originating switch sends “flood” packet out all

ports

• When a “flood” packet arrives on one incoming

port, send it out all other ports

70

Flooding on Spanning Tree

71

Flooding on Spanning Tree (Again)

72

Flooding on a Spanning Tree

• This works because the lack of loops prevents the

flooding from cycling back on itself

• Eventually all nodes will be covered, exactly once

73

But isn’t flooding wasteful?

• Yes, but you can watch the packets going by, and

learn from that

• There is a single path between any two nodes

• If node A sees a packet from node B come in on a

particular port, what can it conclude?

• It knows what port to use to reach B!

74

Nodes can “learn” routing tables

• Switch can learn how to reach nodes by

remembering where flooding packets came from!

• If flood packet from Node A entered switch from

port 4, then switch uses port 4 to reach Node A

75

Learning from Flood Packets

76

Node A

Node A can be reached

 through this port

Node A can be reached

 through this port

Once a node has sent a flood message, all

other switches know how to reach it….

Node B

Node B Responds

77

Node A

Node B can be reached

 through this port

When a node responds, some of the switches

learn where it is

Node B

Node B can be reached

 through this port

Node B can be reached

 through this port

Node B can be reached

 through this port

General Approach

• Flood first packet to node you are trying to reach

• All switches learn where you are

• When destination responds, some switches learn

where it is…
–Only some switches, because packet to you follows

direct path, and is not flooded

• The decision to flood or not is done on a switch-by-

switch basis….
78

79

Self-Learning Switch

When a packet arrives

• Inspect source ID, associate with incoming port

• Store mapping in the switch table

• Use time-to-live field to eventually forget mapping

A

B

C

D

Packet tells switch

how to reach A.

80

Self Learning: Handling Misses

When packet arrives with unfamiliar destination

• Forward packet out all other ports

• Response will teach switch about that destination

A

B

C

D

81

General Rule

When switch receives a packet:

index the switch table using destination ID

if entry found for destination {

 if dest on port from which packet arrived
 then drop packet

 else forward packet on port indicated

 }

 else flood

forward on all but the interface
on which the frame arrived

Why do this?

Summary of Learning Approach

• Avoids loop by restricting to spanning tree

• This makes flooding possible

• Flooding allows packet to reach destination

• And in the process switches learn how to reach

source of flood

• No route “computation”

82

Weaknesses of This Approach?

• Requires loop-free topology (Spanning Tree)
–Must eliminate many links from physical topology

–Reducing bisection bandwidth (jargon)

–Very little control over paths (traffic engineering)

• Slow to react to failures
–Tree must be recomputed

• Slow to react to host movement
–Entries must time out

• Spanning Trees suck (just ask an operator)

83

On to other routing techniques…

• How do we compute loop-free routes in arbitrary

topologies?

• Suggestions?

84

Avoiding Loops

• Central computation
–Can make sure no loops

• Minimizing metric in distributed computation
– Loops are never the solution to a minimization problem

– (for well-behaved metrics)

85

