More Routing

EE122 Fall 2012

Scott Shenker
http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley

(" 2\
Let’s focus on clarifying questions

Vs

Warning....

* | love the degree of interaction in this year’s class
* But there are many people who are confused
* I'd like to give them the chance to ask about basics

* So today, let’s give priority to questions of the form
—“l don’t understand X” or “how does that work?”

* Ask speculative questions during or after break

« This lecture contains detailed calculations

* Prolonged exposure may induce drowsiness

» To keep you awake | will be tossing beanbags
—Do not misplace them
—Do not read the sheet of paper attached
—If you've already participated, hand to nbr who hasn’t

(" 2\
Logic Refresher

Vs

Short Summary of Course

*AifBmeansB = A
— if Bis true, then A is true

*AonlyifBmeans A= B
— if Alis true, then B is true

* Aif and only if B means: A €2 B
1. If Alis true, then B is true
2. If Bis true, then A is true

* To make the statement that A if and only if B, you
must prove statements 1 and 2.

« Architecture, layering, E2E principle, blah, blah,...
—How functionality is organized

* There are only two important design challenges:
—Reliable Transport and Routing

* Reliable Transport:

A transport mechanism is “reliable” if and only if it
resends all dropped or corrupted packets
* Routing:
Global routing state is valid if and only if there are

4 N\
10 Years from Now....

no dead ends (easy) and there are no loops (hard)

>

* If you remember nothing else from this course
except this single slide, I'll be very happy

« If you don’t remember this slide, you have wasted
your time...

s




(" 2\
Previous Routing Lecture

» We assume destination-based forwarding
* The key challenge is to compute loop-free routes

* This is easy when the topology is a tree
—Loops are impossible without reversing a packet
—Flooding always will find the destination
—Can use “learning” to reduce need for flooding

« But this approach has serious disadvantages
—Can’t use entire network, must restrict to tree
—Does not react well to failures or host movement
—Universally hated by operators....

4 N\

Other Ways to Avoid Loops?

« If I gave you a network graph, could you define
loop-free paths to a given destination?

* Simple algorithm:
—For given source, pick an arbitrary path that doesn’t loop
—For any node not on path, draw a path that does not
contradict earlier path
— Continue until all nodes are covered

+ Can pick any spanning tree rooted at destination

(" 2\
Loops are easy to avoid...

iy

( 2\
Example

2

(" 2\

« ..if you have the whole graph

* Centralized or pseudo-centralized computation
—Requirement: routes computed knowing global view
—One node can do calculation for everyone
—Or each node can do calculation for themselves

* But question is: how do you construct global view?

Link-State

Details in Section

)

(" 2\
Link-State Routing Is Conceptually Simple

+ Each router keeps track of its incident links

 Each router broadcasts the link state
—To give every router a complete view of the graph

 Each router computes paths using same algorithm

» Example protocols
—Open Shortest Path First (OSPF)
—Intermediate System — Intermediate System (IS-IS)

* Challenges: scaling, transient disruptions

2)




Link State Routing

» Each node floods its local information
» Each node then knows entire network topology

Host C
(]

=

p
How to Compute Routes

« Each node should have same global view

» They each compute their own routing tables
* Using exactly the same algorithm

» Can use any algorithm that avoids loops

» Computing shortest paths is one such algorithm

* We will review Dijkstra’s algorithm briefly

o Snore....

—Associate “cost” with links, don’t worry what it means..
— Dijkstra’s algorithm is one way to compute shortest paths

—But that's just because it is expected from such courses

)

p
Example

)

4 N\

Link State: Each Node Has Global View

J
e N
“Least Cost” Routes
* No sensible cost metric will be minimized by
traversing a loop
* “Least cost” routes an easy way to avoid loops
* Least cost routes are also “destination-based”
—i.e., do not depend on the source
—Why is this?
* Therefore, least-cost paths form a spanning tree
)
e N

Dijkstra’ s Shortest Path Algorithm

* INPUT:
—Network topology (graph), with link costs

* OUTPUT:
—Least cost paths from one node to all other nodes
—Produces “tree” of routes
o Different from what we talked about before
o Previous tree was rooted at destination
o This is rooted at source
0 But shortest paths are reversible!

» Warnings:
—There is a typo, but | don’t remember where (prize!)
—Most claim to know Dijkstra, but in practice they don't 18




Vs

Notation

c(i,j): link cost from node i
to j; cost infinite if not
direct neighbors; 2 0

D(V): current value of cost
of path from source to
destination v

p(Vv): predecessor node
along path from source to
v, that is next to v

S: set of nodes whose
least cost path definitively
known

J

Vs

Example: Dijkstra’ s Algorithm

1>

te

start S D(B).p(B) D(C).p(C) D(D),p(D) D(E).p(E) D(F)p(F)
A 2,A 5A 1A ¥ ¥

1 Initialization:

2 S={A}

3 for all nodes v

4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ¥;

2)

Vs

Example: Dijkstra’ s Algorithm

Step _ startS D(B),p(B) D(C),p(C) D(D),p(D) D(E)R(E) D(F).p(F)
A 2,A 5A 1A ¥ ¥
(AD)
.

>

1
2
3
4
5

p
Dijkstra’ s Algorithm

c(i,j): link cost from node i to j

1 Initialization:
2 S={A} * D(V): current cost source — v
3 for all nodes v
. - * p(V): predecessor node along
4 ifvadacentto A path from source to v, that is
5 then D(v) = C¥(A,V); next to v
6 else D(v) = ¥;
7 v * S set of nodes whose least
8 Loop cost path definitively known
9  find w not in S such that D(w) is a minimum;
10 addwtosS;

11 update D(v) for all v adjacent to w and not in S:
12 if D(w) + c(w,v) < D(v) then
II'w gives us a shorter path to v than we 've found so far
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

= 8 Loop
\& ing-w-netin S s.t. D(w) is a minimum;
11 update D(v) for all v adjacent
tow and notin S:
12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) =w;
—14 until all nodes in S;

%)

»)
(" 2\
Example: Dijkstra’ s Algorithm
Step stat S D(B).,p(B) D(C),p(C) D(D),p(D) D(E).p(E) D(F).p(F)
0 A 2,A 5,A (1,A) ¥ ¥
- 1 <
2
3
4
5
8 Loop \
10 addwitos;
11 update D(v) for all v adjacent
tow and notin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) =DW) +c(w,v); p(v) =w;
14 until all nodes in S;
7
(" 2\

Example: Dijkstra’ s Algorithm

Step start S

0 A

D(B).p(B) D(C).p(C) D(D),p(D) D(E).p(E) D(F).p(F)
2,A 5 ¥

-+

2D >

AD <4.D
\

\

1
2
3 \
4
5

\

8 Loop

10 addwtoS;

9 findw notin S\s.t. D(w) is @ minimum;

tow and notin S:
12 If D(w) + c(w,v) < D(v) then
3 D(v) = D(w) + c(w,v); p(v) = w;

[1 update D(v) for all v adjacent

14 until all nodes in S;

%




(" 2\
Example: Dijkstra’ s Algorithm

Step _ startS D(B).p(B) D(C),p(C) D(D).p(D) D(E)R(E) D(F).p(F)
2,A 5A 1A ¥ ¥

(" 2\
Example: Dijkstra’ s Algorithm

0 A
1 AD 4D 2,D
™2 ADE 3,E 4E

3

4

5
8 Loop
9 findw notin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

%

( 2\

Example: Dijkstra’ s Algorithm

Step stat S D(B).p(B) D(C),p(C) D(D),p(D) D(E),PéE) D(F).p(F)

Step  startS D(B).p(B) D(C).p(C) D(D).p(D) D(E).p(E) D(F).R(F)
0 A 2,A 5A LA ¥ ¥

1 AD 4D 2D

2 ADE 3E 4.E
“T"_3 ADEB

4

5

8 Loop

9 findw notin S s.t. D(w) is @ minimum;
10 addwtosS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

0 A 2,A 5A 1A ¥

1 AD 4D 2D

2 ADE 3,E 4E

3 ADEB

“"_4 ADEBC

5
8 Loop
9 findw notin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

7

(" 2\
Example: Dijkstra’ s Algorithm

Step start S D(B).p(B) D(C),p(C) D(D).p(d). D(E)p(E) D(F).p(F)
2A ¥ ¥

0 A 5A (1,A)

1 AD 4D _—(2D)

2 ADE (BE)— 4E
3 ADEB

4 ADEBC

5 ADEBCF

To determine path A — C (say),
work backward from C via p(v)

=)

%)

( 2\

Example: Dijkstra’ s Algorithm

Step  startS D(B).p(B) D(C),p(C) D(D).p(D) D(E)"’;&E) D(F).p(F)

0 A 2,A 5A 1A ¥
1 AD 4,D 2D
2 ADE 3.E 4E
3 ADEB
4  ADEBC

“I* 5 ADEBCF

8 Loop

9 findw notin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

)
e N
The Forwarding Table
* Running Dijkstra at node A gives the shortest
path from A to all destinations
» We then construct the forwarding table
3 Destination Link
B (A,B)
c (A,D)
D (A,D)
E (A,D)
F (A,D)
®)




( N\
Complexity

* How much processing does running the Dijkstra
algorithm take?

» Assume a network consisting of N nodes
—Each iteration: check all nodes w notin S
—N(N+1)/2 comparisons: O(N?)

—More efficient implementations: O(N log(N))

4 N\
Flooding the Topology Information

2

( 2\

Making Flooding Reliable

+ Each router sends information out its ports

» The next node sends it out through all of its ports
—Except the one where the information arrived
—Need to remember previous msgs, suppress duplicates!

D—0 X A
e
(b)

O X
|
Y >
©
g‘

* Reliable flooding
—Ensure all nodes receive link-state information
—Ensure all nodes use the latest version

» Challenges
—Packet loss
— Out-of-order arrival

* Solutions
—Acknowledgments and retransmissions
—Sequence numbers

* How can it still fail?

' N\
When to Initiate Flood?

=)

(" 2\
Convergence

* Topology change
—Link or node failure
—Link or node recovery

+ Configuration change
—Link cost change
— Potential problems with making cost dynamic!

* Periodically
—Refresh the link-state information
—Typically (say) 30 minutes
— Corrects for possible corruption of the data

« Getting consistent routing information to all nodes
—E.g., all nodes having the same link-state database

» Forwarding is consistent after convergence
—All nodes have the same link-state database
—All nodes forward packets on same paths

*)

(" 2\
Convergence Delay

=)

* Time elapsed before every router has a consistent
picture of the network

* Sources of convergence delay
—Detection latency
—Flooding of link-state information
—Recomputation of forwarding tables
— Storing forwarding tables

+ Performance during convergence period
—Lost packets due to blackholes and TTL expiry
—Looping packets consuming resources
— Out-of-order packets reaching the destination

* Very bad for VolP, online gaming, and video

*)




Vs

Transient Disruptions

* Inconsistent link-state database
—Some routers know about failure before others
—The shortest paths are no longer consistent
—Can cause transient forwarding loops

Loop!

A and D think that this E thinks that this

is the path to C is the path to C

")

Vs

Scaling Link-State Routing

» Overhead of link-state routing
— Flooding link-state packets throughout the network
— Running Dijkstra’s shortest-path algorithm
— Becomes unscalable when 100s of routers

« Introducing hierarchy through “areas”

area //

border
router

®)

Learn-By-Doing

| need 40 volunteers

If you haven’t participated, this is your chance!

41

(" 2\
Reducing Convergence Delay

* Faster detection
—Smaller “hello” timers
—Link-layer technologies that can detect failures

* Faster flooding
—Flooding immediately
—Sending link-state packets with high-priority

+ Faster computation
— Faster processors on the routers
—Incremental Dijkstra algorithm

+ Faster forwarding-table update
—Data structures supporting incremental updates

(" 2\
What about other approaches?

* Link-state is essentially a centralized computation:
—Global state, local computation

» What about a more distributed approach?
—Local state, global computation

)

4 N\

The Task

* Remove sheet of paper from beanbag, but do not
look at sheet of paper until | say so

* You will have five minutes to complete this task

* Each sheet says:

You are node X You are connected to nodes Y,Z

* Your job: find route from source (node 1) to

destination (node 40) in five minutes

2)




Vs

Ground Rules

* You may not:
—Leave your seat (but you can stand)
—Pass your sheet of paper
—Let anyone copy your sheet of paper

* You may:
—Ask nearby friends for advice
—Shout to other participants (anything you want)
—Curse your instructor (sotto voce)

* You must: Try

Vs

Distributed Computation of Routes

* More scalable than Link-State
—No global flooding

» Each node computing the outgoing port based on:
—Local information (who it is connected to)
—Paths advertised by neighbors

« Algorithms differ in what these exchanges contain
— Distance-vector: just the distance to each destination
— Path-vector: the entire path to each destination

« We will focus on distance-vector for now

)

—h

4 2\
Go!

“ )

4 N\

Distance-Vector
Details in Section

“ J

-

Distributed Computation

| am three hops away

[I am three hops awa

.‘-

AN

| am three hops away

| am two hops away

am two hops away

Iam one h

| am one hop away

| am one hop away

op 3

)




e N
This is what you could have done
* Destination stands up
* Announces neighbors
—They stand up
» They announce their neighbors
—They stand up (if they haven’t already done so)
—They remember who called them to stand
LI and so on, until source stands
» Key point: don’t stand up twice!
*)
e N
Step 1
S
e N
Step 2

| am one hop away

e

53/

e N
Step 1
« Destination stands up
%)
e N
Step 2
* Destination stands up
* Announces neighbors
—They stand up
%2)
e N
Step 3
* Destination stands up
» Announces neighbors
—They stand up
» They announce their neighbors
—They stand up
*)




N\ 4

Why Not Stand Up Twice?

* Being called a second time means that there is a
second (and longer) path to you
—You already contacted your neighbors the first time
—Your distance to destination is based on shorter path

| am two hops away

55/ 56/
e N e N
Congratulations! Routing “Metrics”
* You have “implemented” Distance-Vector routing + Algorithm finds path with smallest hop-count
—For a single destination —More complicated if you route with a different metric
—With the slowest code possible
« Other routing goals (besides hop-count)
* OK, so now let's consider this more generally.... —Path with highest capacity
— Path with lowest latency
—Path with most reliable links
* Generally, assume every link has “cost” or weight
associated with it, and you want to minimize cost
57) ssj
N e N

Vs

Distance Vector Routing Information Flow in Distance Vector

» Each router knows the links to its neighbors
—Does not flood this information to the whole network

« Each router has provisional “shortest path”
—E.g.: Router A: “I can get to router B with cost 11 via
next hop router D”

» Routers exchange this Distance-Vector
information with their neighboring routers
—Vector because one entry per destination

* Routers update their idea of the best path using
info from neighbors

« Iterative process converges to set of shortest
paths 5 )

©)




p
Information Flow in Distance Vector

4 N\
Information Flow in Distance Vector

J

Why is this different from rooding?]

=)

11



