More Routing

EE122 Fall 2012

Scott Shenker
http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley

(" 2\
Let’s focus on clarifying questions
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Warning....

* | love the degree of interaction in this year’s class
* But there are many people who are confused
* I'd like to give them the chance to ask about basics

* So today, let’s give priority to questions of the form
—“l don’t understand X” or “how does that work?”

* Ask speculative questions during or after break

« This lecture contains detailed calculations

* Prolonged exposure may induce drowsiness

» To keep you awake | will be tossing beanbags
—Do not misplace them
—Do not read the sheet of paper attached
—If you've already participated, hand to nbr who hasn’t
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Logic Refresher
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Short Summary of Course

*AifBmeansB = A
— if Bis true, then A is true

*AonlyifBmeans A= B
— if Alis true, then B is true

* Aif and only if B means: A €2 B
1. If Alis true, then B is true
2. If Bis true, then A is true

* To make the statement that A if and only if B, you
must prove statements 1 and 2.

« Architecture, layering, E2E principle, blah, blah,...
—How functionality is organized

* There are only two important design challenges:
—Reliable Transport and Routing

* Reliable Transport:

A transport mechanism is “reliable” if and only if it
resends all dropped or corrupted packets
* Routing:
Global routing state is valid if and only if there are
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10 Years from Now....

no dead ends (easy) and there are no loops (hard)
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* If you remember nothing else from this course
except this single slide, I'll be very happy

« If you don’t remember this slide, you have wasted
your time...
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Previous Routing Lecture

» We assume destination-based forwarding
* The key challenge is to compute loop-free routes

* This is easy when the topology is a tree
—Loops are impossible without reversing a packet
—Flooding always will find the destination
—Can use “learning” to reduce need for flooding

« But this approach has serious disadvantages
—Can’t use entire network, must restrict to tree
—Does not react well to failures or host movement
—Universally hated by operators....
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Other Ways to Avoid Loops?

« If I gave you a network graph, could you define
loop-free paths to a given destination?

* Simple algorithm:
—For given source, pick an arbitrary path that doesn’t loop
—For any node not on path, draw a path that does not
contradict earlier path
— Continue until all nodes are covered

+ Can pick any spanning tree rooted at destination
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Loops are easy to avoid...
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Example

2
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« ..if you have the whole graph

* Centralized or pseudo-centralized computation
—Requirement: routes computed knowing global view
—One node can do calculation for everyone
—Or each node can do calculation for themselves

* But question is: how do you construct global view?

Link-State

Details in Section

)
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Link-State Routing Is Conceptually Simple

+ Each router keeps track of its incident links

 Each router broadcasts the link state
—To give every router a complete view of the graph

 Each router computes paths using same algorithm

» Example protocols
—Open Shortest Path First (OSPF)
—Intermediate System — Intermediate System (IS-IS)

* Challenges: scaling, transient disruptions
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Link State Routing

» Each node floods its local information
» Each node then knows entire network topology

Host C
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How to Compute Routes

« Each node should have same global view

» They each compute their own routing tables
* Using exactly the same algorithm

» Can use any algorithm that avoids loops

» Computing shortest paths is one such algorithm

* We will review Dijkstra’s algorithm briefly

o Snore....

—Associate “cost” with links, don’t worry what it means..
— Dijkstra’s algorithm is one way to compute shortest paths

—But that's just because it is expected from such courses
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Example
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Link State: Each Node Has Global View

J
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“Least Cost” Routes
* No sensible cost metric will be minimized by
traversing a loop
* “Least cost” routes an easy way to avoid loops
* Least cost routes are also “destination-based”
—i.e., do not depend on the source
—Why is this?
* Therefore, least-cost paths form a spanning tree
)
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Dijkstra’ s Shortest Path Algorithm

* INPUT:
—Network topology (graph), with link costs

* OUTPUT:
—Least cost paths from one node to all other nodes
—Produces “tree” of routes
o Different from what we talked about before
o Previous tree was rooted at destination
o This is rooted at source
0 But shortest paths are reversible!

» Warnings:
—There is a typo, but | don’t remember where (prize!)
—Most claim to know Dijkstra, but in practice they don't 18
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Notation

c(i,j): link cost from node i
to j; cost infinite if not
direct neighbors; 2 0

D(V): current value of cost
of path from source to
destination v

p(Vv): predecessor node
along path from source to
v, that is next to v

S: set of nodes whose
least cost path definitively
known

J
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Example: Dijkstra’ s Algorithm
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start S D(B).p(B) D(C).p(C) D(D),p(D) D(E).p(E) D(F)p(F)
A 2,A 5A 1A ¥ ¥

1 Initialization:

2 S={A}

3 for all nodes v

4 if v adjacent to A
5 then D(v) = c(A,v);
6 else D(v) = ¥;
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Example: Dijkstra’ s Algorithm

Step _ startS D(B),p(B) D(C),p(C) D(D),p(D) D(E)R(E) D(F).p(F)
A 2,A 5A 1A ¥ ¥
(AD)
.

>

1
2
3
4
5
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Dijkstra’ s Algorithm

c(i,j): link cost from node i to j

1 Initialization:
2 S={A} * D(V): current cost source — v
3 for all nodes v
. - * p(V): predecessor node along
4 ifvadacentto A path from source to v, that is
5 then D(v) = C¥(A,V); next to v
6 else D(v) = ¥;
7 v * S set of nodes whose least
8 Loop cost path definitively known
9  find w not in S such that D(w) is a minimum;
10 addwtosS;

11 update D(v) for all v adjacent to w and not in S:
12 if D(w) + c(w,v) < D(v) then
II'w gives us a shorter path to v than we 've found so far
13 D(v) = D(w) + c(w,v); p(v) = w;
14 until all nodes in S;

= 8 Loop
\& ing-w-netin S s.t. D(w) is a minimum;
11 update D(v) for all v adjacent
tow and notin S:
12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) =w;
—14 until all nodes in S;
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Example: Dijkstra’ s Algorithm
Step stat S D(B).,p(B) D(C),p(C) D(D),p(D) D(E).p(E) D(F).p(F)
0 A 2,A 5,A (1,A) ¥ ¥
- 1 <
2
3
4
5
8 Loop \
10 addwitos;
11 update D(v) for all v adjacent
tow and notin S:
12 If D(w) + c(w,v) < D(v) then
13 D(v) =DW) +c(w,v); p(v) =w;
14 until all nodes in S;
7
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Example: Dijkstra’ s Algorithm

Step start S

0 A

D(B).p(B) D(C).p(C) D(D),p(D) D(E).p(E) D(F).p(F)
2,A 5 ¥

-+

2D >

AD <4.D
\

\

1
2
3 \
4
5
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8 Loop

10 addwtoS;

9 findw notin S\s.t. D(w) is @ minimum;

tow and notin S:
12 If D(w) + c(w,v) < D(v) then
3 D(v) = D(w) + c(w,v); p(v) = w;

[1 update D(v) for all v adjacent

14 until all nodes in S;
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Example: Dijkstra’ s Algorithm

Step _ startS D(B).p(B) D(C),p(C) D(D).p(D) D(E)R(E) D(F).p(F)
2,A 5A 1A ¥ ¥
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Example: Dijkstra’ s Algorithm

0 A
1 AD 4D 2,D
™2 ADE 3,E 4E

3

4

5
8 Loop
9 findw notin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

%
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Example: Dijkstra’ s Algorithm

Step stat S D(B).p(B) D(C),p(C) D(D),p(D) D(E),PéE) D(F).p(F)

Step  startS D(B).p(B) D(C).p(C) D(D).p(D) D(E).p(E) D(F).R(F)
0 A 2,A 5A LA ¥ ¥

1 AD 4D 2D

2 ADE 3E 4.E
“T"_3 ADEB

4

5

8 Loop

9 findw notin S s.t. D(w) is @ minimum;
10 addwtosS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

0 A 2,A 5A 1A ¥

1 AD 4D 2D

2 ADE 3,E 4E

3 ADEB

“"_4 ADEBC

5
8 Loop
9 findw notin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

7
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Example: Dijkstra’ s Algorithm

Step start S D(B).p(B) D(C),p(C) D(D).p(d). D(E)p(E) D(F).p(F)
2A ¥ ¥

0 A 5A (1,A)

1 AD 4D _—(2D)

2 ADE (BE)— 4E
3 ADEB

4 ADEBC

5 ADEBCF

To determine path A — C (say),
work backward from C via p(v)

=)
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Example: Dijkstra’ s Algorithm

Step  startS D(B).p(B) D(C),p(C) D(D).p(D) D(E)"’;&E) D(F).p(F)

0 A 2,A 5A 1A ¥
1 AD 4,D 2D
2 ADE 3.E 4E
3 ADEB
4  ADEBC

“I* 5 ADEBCF

8 Loop

9 findw notin S s.t. D(w) is a minimum;
10 addwtoS;

11 update D(v) for all v adjacent
tow and notin S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;
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The Forwarding Table
* Running Dijkstra at node A gives the shortest
path from A to all destinations
» We then construct the forwarding table
3 Destination Link
B (A,B)
c (A,D)
D (A,D)
E (A,D)
F (A,D)
®)
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Complexity

* How much processing does running the Dijkstra
algorithm take?

» Assume a network consisting of N nodes
—Each iteration: check all nodes w notin S
—N(N+1)/2 comparisons: O(N?)

—More efficient implementations: O(N log(N))
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Flooding the Topology Information

2
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Making Flooding Reliable

+ Each router sends information out its ports

» The next node sends it out through all of its ports
—Except the one where the information arrived
—Need to remember previous msgs, suppress duplicates!

D—0 X A
e
(b)

O X
|
Y >
©
g‘

* Reliable flooding
—Ensure all nodes receive link-state information
—Ensure all nodes use the latest version

» Challenges
—Packet loss
— Out-of-order arrival

* Solutions
—Acknowledgments and retransmissions
—Sequence numbers

* How can it still fail?

' N\
When to Initiate Flood?
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Convergence

* Topology change
—Link or node failure
—Link or node recovery

+ Configuration change
—Link cost change
— Potential problems with making cost dynamic!

* Periodically
—Refresh the link-state information
—Typically (say) 30 minutes
— Corrects for possible corruption of the data

« Getting consistent routing information to all nodes
—E.g., all nodes having the same link-state database

» Forwarding is consistent after convergence
—All nodes have the same link-state database
—All nodes forward packets on same paths

*)
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Convergence Delay
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* Time elapsed before every router has a consistent
picture of the network

* Sources of convergence delay
—Detection latency
—Flooding of link-state information
—Recomputation of forwarding tables
— Storing forwarding tables

+ Performance during convergence period
—Lost packets due to blackholes and TTL expiry
—Looping packets consuming resources
— Out-of-order packets reaching the destination

* Very bad for VolP, online gaming, and video

*)
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Transient Disruptions

* Inconsistent link-state database
—Some routers know about failure before others
—The shortest paths are no longer consistent
—Can cause transient forwarding loops

Loop!

A and D think that this E thinks that this

is the path to C is the path to C

")
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Scaling Link-State Routing

» Overhead of link-state routing
— Flooding link-state packets throughout the network
— Running Dijkstra’s shortest-path algorithm
— Becomes unscalable when 100s of routers

« Introducing hierarchy through “areas”

area //

border
router

®)

Learn-By-Doing

| need 40 volunteers

If you haven’t participated, this is your chance!

41
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Reducing Convergence Delay

* Faster detection
—Smaller “hello” timers
—Link-layer technologies that can detect failures

* Faster flooding
—Flooding immediately
—Sending link-state packets with high-priority

+ Faster computation
— Faster processors on the routers
—Incremental Dijkstra algorithm

+ Faster forwarding-table update
—Data structures supporting incremental updates
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What about other approaches?

* Link-state is essentially a centralized computation:
—Global state, local computation

» What about a more distributed approach?
—Local state, global computation

)
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The Task

* Remove sheet of paper from beanbag, but do not
look at sheet of paper until | say so

* You will have five minutes to complete this task

* Each sheet says:

You are node X You are connected to nodes Y,Z

* Your job: find route from source (node 1) to

destination (node 40) in five minutes

2)
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Ground Rules

* You may not:
—Leave your seat (but you can stand)
—Pass your sheet of paper
—Let anyone copy your sheet of paper

* You may:
—Ask nearby friends for advice
—Shout to other participants (anything you want)
—Curse your instructor (sotto voce)

* You must: Try
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Distributed Computation of Routes

* More scalable than Link-State
—No global flooding

» Each node computing the outgoing port based on:
—Local information (who it is connected to)
—Paths advertised by neighbors

« Algorithms differ in what these exchanges contain
— Distance-vector: just the distance to each destination
— Path-vector: the entire path to each destination

« We will focus on distance-vector for now

)
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Go!
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Distance-Vector
Details in Section

“ J
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Distributed Computation

| am three hops away

[I am three hops awa

.‘-

AN

| am three hops away

| am two hops away

am two hops away

Iam one h

| am one hop away

| am one hop away

op 3

)




e N
This is what you could have done
* Destination stands up
* Announces neighbors
—They stand up
» They announce their neighbors
—They stand up (if they haven’t already done so)
—They remember who called them to stand
LI and so on, until source stands
» Key point: don’t stand up twice!
*)
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Step 1
S
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Step 2

| am one hop away

e
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Step 1
« Destination stands up
%)
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Step 2
* Destination stands up
* Announces neighbors
—They stand up
%2)
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Step 3
* Destination stands up
» Announces neighbors
—They stand up
» They announce their neighbors
—They stand up
*)
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Why Not Stand Up Twice?

* Being called a second time means that there is a
second (and longer) path to you
—You already contacted your neighbors the first time
—Your distance to destination is based on shorter path

| am two hops away

55/ 56/
e N e N
Congratulations! Routing “Metrics”
* You have “implemented” Distance-Vector routing + Algorithm finds path with smallest hop-count
—For a single destination —More complicated if you route with a different metric
—With the slowest code possible
« Other routing goals (besides hop-count)
* OK, so now let's consider this more generally.... —Path with highest capacity
— Path with lowest latency
—Path with most reliable links
* Generally, assume every link has “cost” or weight
associated with it, and you want to minimize cost
57) ssj
N e N
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Distance Vector Routing Information Flow in Distance Vector

» Each router knows the links to its neighbors
—Does not flood this information to the whole network

« Each router has provisional “shortest path”
—E.g.: Router A: “I can get to router B with cost 11 via
next hop router D”

» Routers exchange this Distance-Vector
information with their neighboring routers
—Vector because one entry per destination

* Routers update their idea of the best path using
info from neighbors

« Iterative process converges to set of shortest
paths 5 )
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Information Flow in Distance Vector
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Information Flow in Distance Vector

J

Why is this different from rooding?]
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