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Let’s focus on clarifying questions 

• I love the degree of interaction in this year’s class 
 

• But there are many people who are confused 
 

• I’d like to give them the chance to ask about basics 
 

• So today, let’s give priority to questions of the form 
– “I don’t understand X” or “how does that work?” 

 

• Ask speculative questions during or after break 
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Warning…. 

• This lecture contains detailed calculations 
 

• Prolonged exposure may induce drowsiness 
 

• To keep you awake I will be tossing beanbags 
–Do not misplace them 

–Do not read the sheet of paper attached 

– If you’ve already participated, hand to nbr who hasn’t 
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Logic Refresher 

• A if B means B  A 
–  if B is true, then A is true 

• A only if B means A  B 
–  if A is true, then B is true 

• A if and only if B means:  A  B 
1. If A is true, then B is true 

2. If B is true, then A is true 

 

• To make the statement that A if and only if B, you 

must prove statements 1 and 2. 
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Short Summary of Course 

• Architecture, layering, E2E principle, blah, blah,… 
–How functionality is organized 

• There are only two important design challenges: 
–Reliable Transport and Routing 

• Reliable Transport: 

A transport mechanism is “reliable” if and only if it 

resends all dropped or corrupted packets 

• Routing: 

Global routing state is valid if and only if there are 

no dead ends (easy) and there are no loops (hard) 
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10 Years from Now…. 

• If you remember nothing else from this course 

except this single slide, I’ll be very happy 

• If you don’t remember this slide, you have wasted 

your time… 
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Previous Routing Lecture 

• We assume destination-based forwarding 

• The key challenge is to compute loop-free routes 

• This is easy when the topology is a tree 
– Loops are impossible without reversing a packet 

–Flooding always will find the destination 

–Can use “learning” to reduce need for flooding 

• But this approach has serious disadvantages 
–Can’t use entire network, must restrict to tree 

–Does not react well to failures or host movement 

–Universally hated by operators…. 
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Other Ways to Avoid Loops? 

• If I gave you a network graph, could you define 

loop-free paths to a given destination? 
 

• Simple algorithm: 
–For given source, pick an arbitrary path that doesn’t loop 

–For any node not on path, draw a path that does not 

contradict earlier path 

–Continue until all nodes are covered 

 

• Can pick any spanning tree rooted at destination 
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Example 
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Loops are easy to avoid… 

• ..if you have the whole graph 
 

• Centralized or pseudo-centralized computation 
–Requirement: routes computed knowing global view 

–One node can do calculation for everyone 

–Or each node can do calculation for themselves 

 

• But question is: how do you construct global view? 
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Link-State 

Details in Section 
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Link-State Routing Is Conceptually Simple 

• Each router keeps track of its incident links 

• Each router broadcasts the link state 
–To give every router a complete view of the graph 

• Each router computes paths using same algorithm 

• Example protocols 
–Open Shortest Path First (OSPF) 

– Intermediate System – Intermediate System (IS-IS) 

• Challenges: scaling, transient disruptions 
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Link State Routing 

• Each node floods its local information 

• Each node then knows entire network topology 
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Link State: Each Node Has Global View 
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How to Compute Routes 

• Each node should have same global view 

• They each compute their own routing tables 

• Using exactly the same algorithm 

• Can use any algorithm that avoids loops 

• Computing shortest paths is one such algorithm 
–Associate “cost” with links, don’t worry what it means…. 

–Dijkstra’s algorithm is one way to compute shortest paths 

• We will review Dijkstra’s algorithm briefly 
–But that’s just because it is expected from such courses 

o Snore…. 
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“Least Cost” Routes 

• No sensible cost metric will be minimized by 

traversing a loop 

• “Least cost” routes an easy way to avoid loops 

• Least cost routes are also “destination-based” 
– i.e., do not depend on the source 

–Why is this? 

• Therefore, least-cost paths form a spanning tree 
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Dijkstra’s Shortest Path Algorithm 

• INPUT: 
–Network topology (graph), with link costs 

• OUTPUT: 
– Least cost paths from one node to all other nodes 

–Produces “tree” of routes 
o Different from what we talked about before 

o Previous tree was rooted at destination 

o This is rooted at source 

o But shortest paths are reversible! 

 

• Warnings: 
–There is a typo, but I don’t remember where (prize!) 

–Most claim to know Dijkstra, but in practice they don’t 
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Notation 

 

• c(i,j): link cost from node i 
to j; cost infinite if not 
direct neighbors; ≥ 0 

• D(v): current value of cost 
of path from source to 
destination v 

• p(v): predecessor node 
along path from source to 
v, that is next to v 

• S: set of nodes whose 
least cost path definitively 
known 
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Dijkstra’s Algorithm 

1  Initialization:  

2    S = {A}; 

3    for all nodes v  

4      if v adjacent to A  

5        then D(v) = c(A,v);  

6        else D(v) =     ; 

7  

8   Loop  

9      find w not in S such that D(w) is a minimum;  

10    add w to S;  

11    update D(v) for all v adjacent to w and not in S:  

12       if  D(w) + c(w,v) < D(v) then 

              // w gives us a shorter path to v than we’ve found so far  

13          D(v) = D(w) + c(w,v); p(v) = w; 

14  until all nodes in S;  

¥

• c(i,j): link cost from node i to j 

• D(v): current cost source  v 

• p(v): predecessor node along 
path from source to v, that is 
next to v 

• S: set of nodes whose least 
cost path definitively known 
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Example: Dijkstra’s Algorithm 
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Example: Dijkstra’s Algorithm 
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9      find w not in S s.t. D(w) is a minimum;  

10    add w to S;  

11 update D(v) for all v adjacent  

          to w and not in S:  
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13     D(v) = D(w) + c(w,v); p(v) = w; 
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Example: Dijkstra’s Algorithm 
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8   Loop  

9      find w not in S s.t. D(w) is a minimum;  

10    add w to S;  

11 update D(v) for all v adjacent  

          to w and not in S:  

12 If D(w) + c(w,v) < D(v) then 

13     D(v) = D(w) + c(w,v); p(v) = w; 

14    until all nodes in S;  
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Example: Dijkstra’s Algorithm 
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8   Loop  

9      find w not in S s.t. D(w) is a minimum;  

10    add w to S;  

11 update D(v) for all v adjacent  

          to w and not in S:  

12 If D(w) + c(w,v) < D(v) then 

13     D(v) = D(w) + c(w,v); p(v) = w; 

14    until all nodes in S;  
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8   Loop  
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14    until all nodes in S;  
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• Running Dijkstra at node A gives the shortest 
path from A to all destinations 

• We then construct the forwarding table 

The Forwarding Table 
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Complexity 

• How much processing does running the Dijkstra 

algorithm take? 

• Assume a network consisting of N nodes 
–Each iteration: check all nodes w not in S 

–N(N+1)/2 comparisons: O(N2) 

–More efficient implementations: O(N log(N)) 
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Flooding the Topology Information 

• Each router sends information out its ports 

• The next node sends it out through all of its ports 
–Except the one where the information arrived 

–Need to remember previous msgs, suppress duplicates! 

X A 

C B D 

(a) 

X A 

C B D 

(b) 

X A 

C B D 

(c) 

X A 

C B D 

(d) 



Making Flooding Reliable 

• Reliable flooding 
–Ensure all nodes receive link-state information 

–Ensure all nodes use the latest version 

• Challenges 
–Packet loss 

–Out-of-order arrival 

• Solutions 
–Acknowledgments and retransmissions 

–Sequence numbers 

• How can it still fail? 
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When to Initiate Flood? 

• Topology change 
– Link or node failure 

– Link or node recovery 

• Configuration change 
– Link cost change 

–Potential problems with making cost dynamic! 

• Periodically 
–Refresh the link-state information 

–Typically (say) 30 minutes 

–Corrects for possible corruption of the data 
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Convergence 

• Getting consistent routing information to all nodes 
–E.g., all nodes having the same link-state database 

 

• Forwarding is consistent after convergence 
–All nodes have the same link-state database 

–All nodes forward packets on same paths 
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Convergence Delay 

• Time elapsed before every router has a consistent 
picture of the network 

• Sources of convergence delay 
–Detection latency 

–Flooding of link-state information 

–Recomputation of forwarding tables 

–Storing forwarding tables 

• Performance during convergence period 
– Lost packets due to blackholes and TTL expiry 

– Looping packets consuming resources 

–Out-of-order packets reaching the destination 

• Very bad for VoIP, online gaming, and video 
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• Inconsistent link-state database 
–Some routers know about failure before others 

–The shortest paths are no longer consistent 

–Can cause transient forwarding loops 

Transient Disruptions 
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is the path to C 

E thinks that this 

is the path to C 

Loop! 
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Reducing Convergence Delay 

• Faster detection 
–Smaller “hello” timers 

– Link-layer technologies that can detect failures 

• Faster flooding 
–Flooding immediately 

–Sending link-state packets with high-priority 

• Faster computation 
–Faster processors on the routers 

– Incremental Dijkstra algorithm 

• Faster forwarding-table update 
–Data structures supporting incremental updates 
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Scaling Link-State Routing 

• Overhead of link-state routing 
– Flooding link-state packets throughout the network 

– Running Dijkstra’s shortest-path algorithm 

– Becomes unscalable when 100s of routers 

• Introducing hierarchy through “areas” 

Area 0 

Area 1 Area 2 

Area 3 Area 4 

area 
border 
router 



What about other approaches? 

• Link-state is essentially a centralized computation: 
–Global state, local computation 

 

• What about a more distributed approach? 
–Local state, global computation 
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Learn-By-Doing 

I need 40 volunteers 

If you haven’t participated, this is your chance! 



The Task 

• Remove sheet of paper from beanbag, but do not 

look at sheet of paper until I say so 
 

• You will have five minutes to complete this task 
 

• Each sheet says: 

You are node X  You are connected to nodes Y,Z 
 

• Your job: find route from source (node 1) to 

destination (node 40) in five minutes 
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Ground Rules 

• You may not: 
– Leave your seat (but you can stand) 

–Pass your sheet of paper 

– Let anyone copy your sheet of paper 

 

• You may: 
–Ask nearby friends for advice 

–Shout to other participants (anything you want) 

–Curse your instructor (sotto voce) 

 

• You must: Try 
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Go! 
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1 16 36 7 25 

10 19 5 34 38 

29 33 15 39 23 

14 9 2 35 11 

22 32 26 21 37 

3 28 12 30 4 

27 20 31 18 24 

40 8 17 6 13 
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Distance-Vector 

Details in Section 



Distributed Computation of Routes 

• More scalable than Link-State 
–No global flooding 

• Each node computing the outgoing port based on: 
– Local information (who it is connected to) 

–Paths advertised by neighbors 

• Algorithms differ in what these exchanges contain 
–Distance-vector: just the distance to each destination 

–Path-vector: the entire path to each destination 

• We will focus on distance-vector for now 
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Example of Distributed Computation 
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I am one hop away 

I am one hop away 

I am one hop away 

I am two hops away 

I am two hops away 

I am two hops away 

I am two hops away 

I am three hops away 

I am three hops away 

Destination 
I am three hops away 



This is what you could have done 

• Destination stands up 

• Announces neighbors 
–They stand up 

• They announce their neighbors 
–They stand up (if they haven’t already done so) 

–They remember who called them to stand 

• …..and so on, until source stands 

 

• Key point: don’t stand up twice! 
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Step 1 

• Destination stands up 
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Step 1 
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Step 2 

• Destination stands up 

• Announces neighbors 
–They stand up 
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Step 2 
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I am one hop away 

I am one hop away 

I am one hop away 



Step 3 

• Destination stands up 

• Announces neighbors 
–They stand up 

• They announce their neighbors 
–They stand up 
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Step 3 
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Why Not Stand Up Twice? 

• Being called a second time means that there is a 

second (and longer) path to you 
–You already contacted your neighbors the first time 

–Your distance to destination is based on shorter path 
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Congratulations! 

• You have “implemented” Distance-Vector routing 
–For a single destination 

–With the slowest code possible 

 

• OK, so now let’s consider this more generally…. 
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Routing “Metrics” 

• Algorithm finds path with smallest hop-count 
–More complicated if you route with a different metric 

 

• Other routing goals (besides hop-count) 
–Path with highest capacity 

–Path with lowest latency 

–Path with most reliable links 

–…. 
 

• Generally, assume every link has “cost” or weight 

associated with it, and you want to minimize cost 
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Distance Vector Routing 

• Each router knows the links to its neighbors 
–Does not flood this information to the whole network 

• Each router has provisional “shortest path” 
–E.g.:  Router A: “I can get to router B with cost 11 via 

next hop router D” 

• Routers exchange this Distance-Vector  
information with their neighboring routers 
–Vector because one entry per destination 

• Routers update their idea of the best path using 
info from neighbors 

• Iterative process converges to set of shortest 
paths 
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Information Flow in Distance Vector 
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Information Flow in Distance Vector 
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Information Flow in Distance Vector 

Host A 

Host B 
Host E 

Host D 

Host C 

N1 N2 

N3 
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Why is this different from flooding? 


