

More Routing

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson and other colleagues at Princeton and UC Berkeley

Let's focus on clarifying questions

- I love the degree of interaction in this year's class
- But there are many people who are confused
- I'd like to give them the chance to ask about basics
- So today, let's give priority to questions of the form - "I don't understand X" or "how does that work?"
- Ask speculative questions during or after break

Warning....

- This lecture contains detailed calculations
- Prolonged exposure may induce drowsiness
- To keep you awake I will be tossing beanbags
 - Do not misplace them
 - Do not read the sheet of paper attached
 - If you've already participated, hand to nbr who hasn't

Logic Refresher

- A *if* B means B → A
 if B is true, then A is true
- A only if B means A → B
 if A is true, then B is true
- A *if and only if* B means: A ←→ B
 - 1. If A is true, then B is true
 - 2. If B is true, then A is true
- To make the statement that A if and only if B, you must prove statements 1 and 2.

Short Summary of Course

- Architecture, layering, E2E principle, blah, blah,...
 How functionality is organized
- There are only two important design challenges: - Reliable Transport and Routing
- Reliable Transport:

A transport mechanism is "reliable" if and only if it resends all dropped or corrupted packets

• Routing:

Global routing state is valid if and only if there are no dead ends (easy) and there are no loops (hard)

10 Years from Now....

- If you remember nothing else from this course except this single slide, I'll be very happy
- If you don't remember this slide, you have wasted your time...

Previous Routing Lecture

- We assume destination-based forwarding
- The key challenge is to compute loop-free routes
- This is easy when the topology is a tree
 - Loops are impossible without reversing a packet
 - Flooding always will find the destination
 - Can use "learning" to reduce need for flooding
- But this approach has serious disadvantages
 - Can't use entire network, must restrict to tree
 - Does not react well to failures or host movement
 - Universally hated by operators....

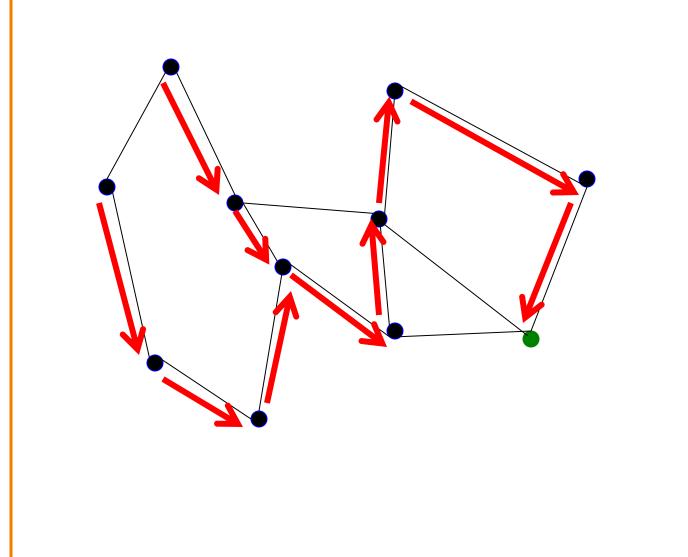
Other Ways to Avoid Loops?

• If I gave you a network graph, could you define loop-free paths to a given destination?

• Simple algorithm:

- For given source, pick an arbitrary path that doesn't loop
- For any node not on path, draw a path that does not contradict earlier path
- Continue until all nodes are covered
- Can pick any spanning tree rooted at destination

Example



Loops are easy to avoid...

- ...if you have the whole graph
- Centralized or pseudo-centralized computation
 - Requirement: *routes computed knowing global view*
 - One node can do calculation for everyone
 - -Or each node can do calculation for themselves
- But question is: how do you construct global view?

Link-State

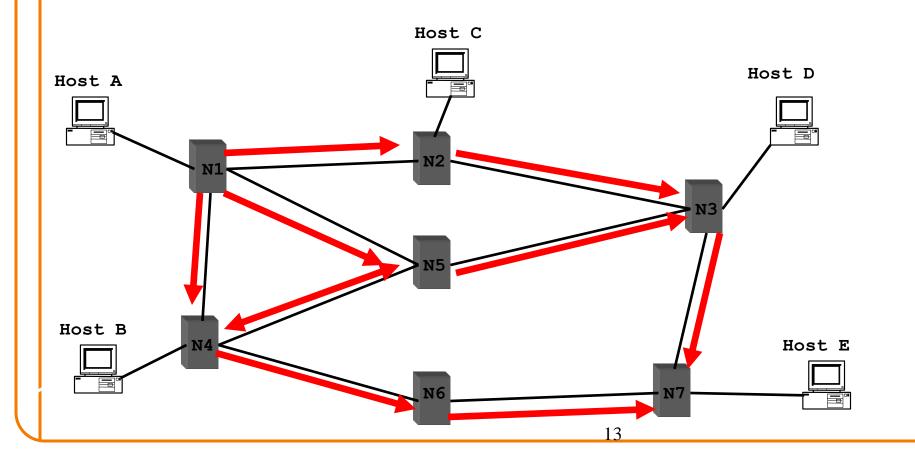
Details in Section

Link-State Routing Is Conceptually Simple

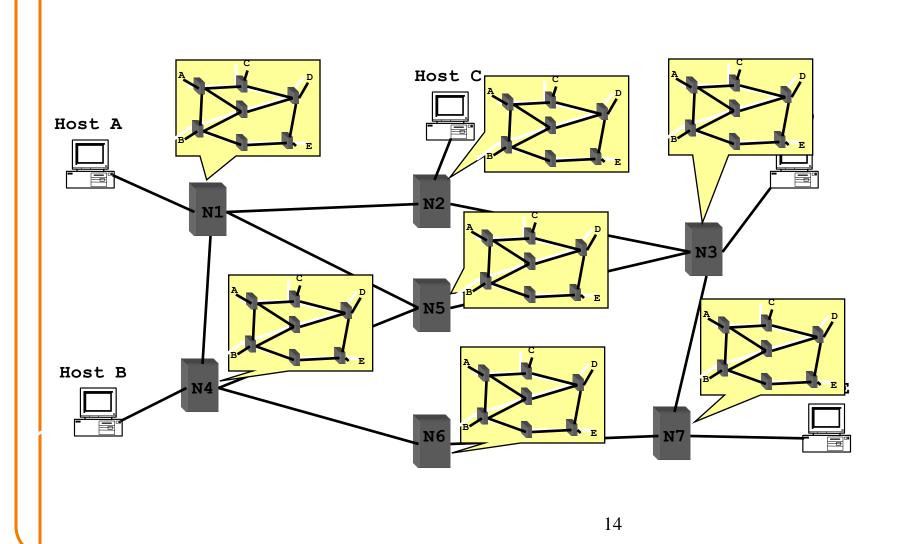
- Each router keeps track of its incident links
- Each router broadcasts the link state
 To give every router a complete view of the graph
- Each router computes paths using same algorithm
- Example protocols
 - Open Shortest Path First (OSPF)
 - Intermediate System Intermediate System (IS-IS)
- Challenges: scaling, transient disruptions

Link State Routing

- Each node floods its local information
- Each node then knows entire network topology



Link State: Each Node Has Global View



How to Compute Routes

- Each node should have same global view
- They each compute their own routing tables
- Using exactly the same algorithm
- Can use *any* algorithm that avoids loops
- Computing shortest paths is one such algorithm

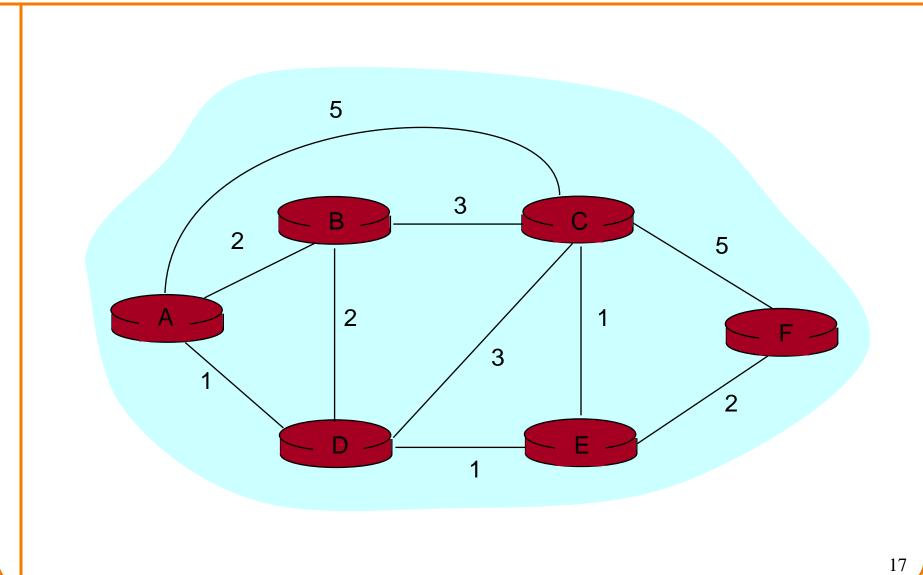
 Associate "cost" with links, don't worry what it means....
 Dijkstra's algorithm is one way to compute shortest paths
- We will review Dijkstra's algorithm briefly
 - But that's just because it is expected from such courses o Snore....

"Least Cost" Routes

- No sensible cost metric will be minimized by traversing a loop
- "Least cost" routes an easy way to avoid loops
- Least cost routes are also "destination-based"

 i.e., do not depend on the source
 Why is this?
- Therefore, least-cost paths form a spanning tree

Example

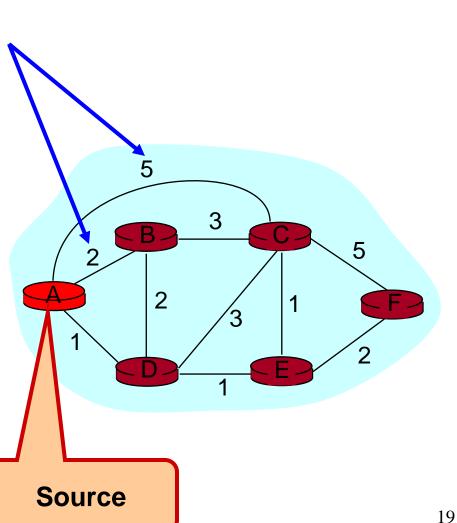


Dijkstra's Shortest Path Algorithm

- INPUT:
 - -Network topology (graph), with link costs
- OUTPUT:
 - -Least cost paths from one node to all other nodes
 - Produces "tree" of routes
 - o Different from what we talked about before
 - o Previous tree was rooted at destination
 - o This is rooted at source
 - o But shortest paths are reversible!
- Warnings:
 - There is a typo, but I don't remember where (prize!)
 - Most claim to know Dijkstra, but in practice they don't 18

Notation

- C(i,j): link cost from node i to *j*; cost infinite if not direct neighbors; ≥ 0
- D(v): current value of cost of path from source to destination v
- p(v): predecessor node along path from source to v, that is next to v
- S: set of nodes whose least cost path definitively known



Dijkstra's Algorithm

1 Initialization:

- 2 **S** = {**A**};
- 3 for all nodes v
- 4 if **v** adjacent to **A**
- 5 then D(v) = c(A,v);
- 6 else D(v) = 4;

- **C(i,j)**: link cost from node *i* to *j*
- D(v): current cost source $\rightarrow v$
- p(v): predecessor node along path from source to v, that is next to v
- S: set of nodes whose least cost path definitively known

→8 **Loop**

7

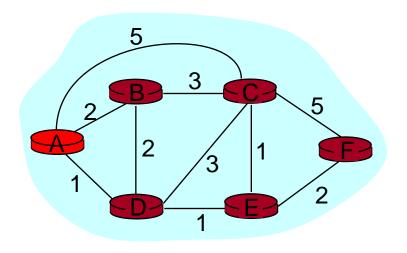
- 9 find \mathbf{w} not in \mathbf{S} such that $D(\mathbf{w})$ is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:

12 if
$$D(w) + c(w,v) < D(v)$$
 then

// w gives us a shorter path to v than we've found so far

13
$$D(v) = D(w) + c(w,v); p(v) = w;$$

	Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
-	0	А	2,A	5,A	1,A	¥	¥
	1						
	2						
	3						
	4						
	5						



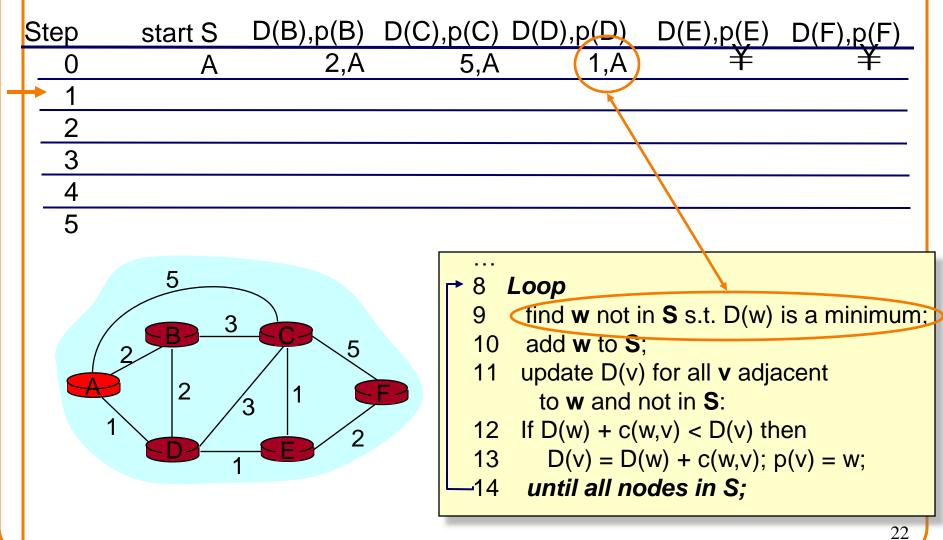
- 1 Initialization:
- 2 **S** = {A};

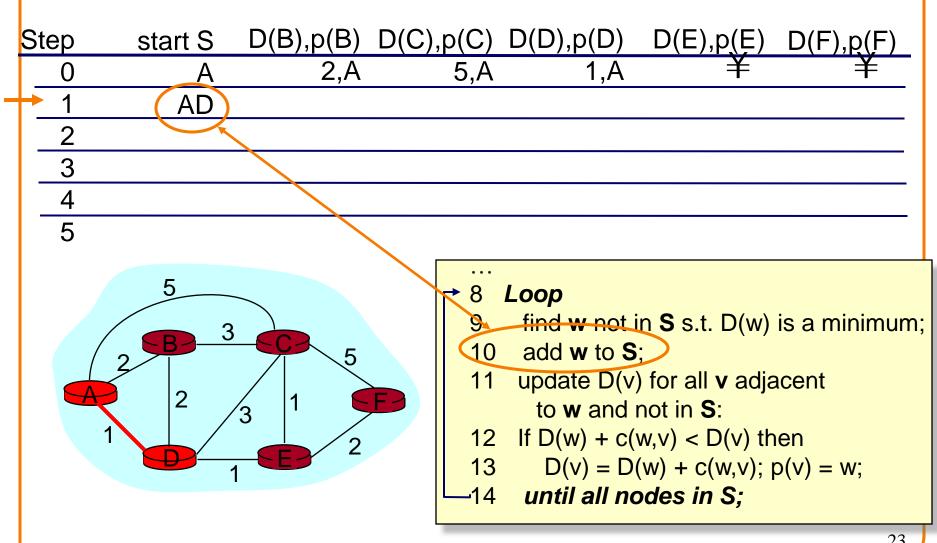
. . .

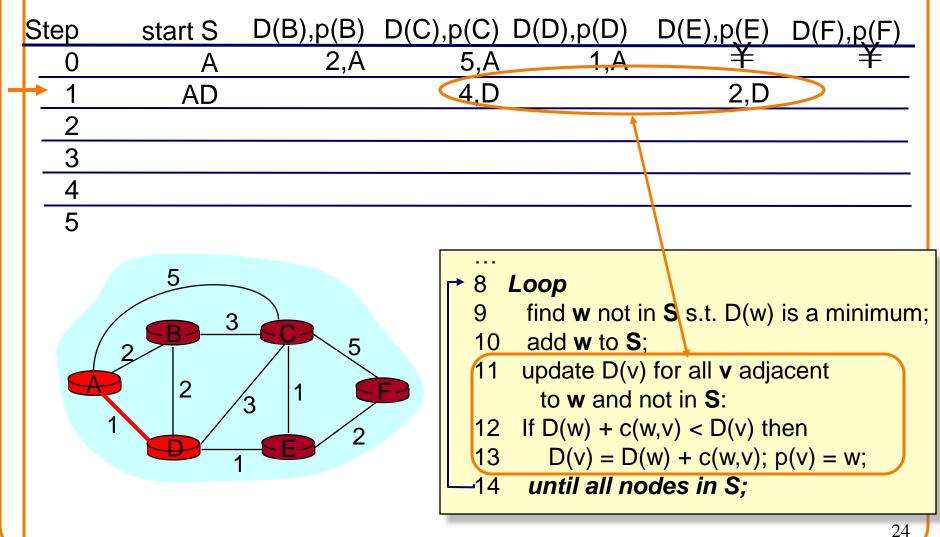
- 3 for all nodes v
- 4 if **v** adjacent to **A**

5 then
$$D(v) = c(A,v);$$

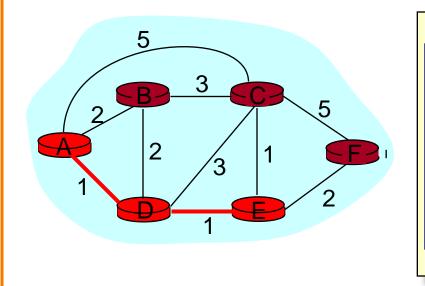
6 else
$$D(v) = ¥;$$







	Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	¥	¥
	1	AD		4,D		2,D	
-	2	ADE		3,E			4,E
	3						
	4						
	5						



8 Loop

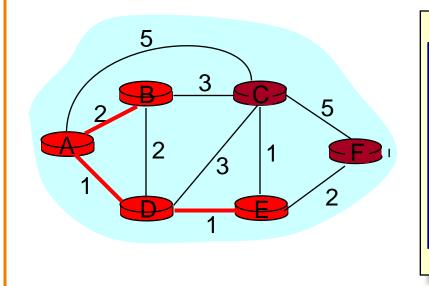
. . .

- 9 find **w** not in **S** s.t. D(w) is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:

12 If
$$D(w) + c(w,v) < D(v)$$
 then

3
$$D(v) = D(w) + c(w,v); p(v) = w;$$

St	tep	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	¥	¥
	1	AD		4,D		2,D	
	2	ADE		3,E			4,E
✦	3	ADEB					
	4						
	5						



8 Loop

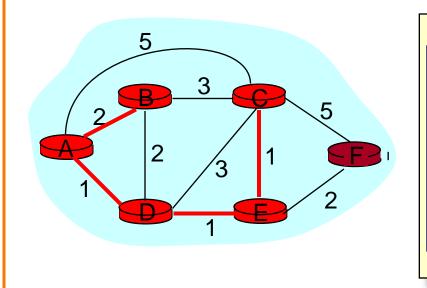
. . .

- 9 find **w** not in **S** s.t. D(w) is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:

12 If
$$D(w) + c(w,v) < D(v)$$
 then

3
$$D(v) = D(w) + c(w,v); p(v) = w;$$

	Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	¥	¥
	1	AD		4,D		2,D	
	2	ADE		3,E			4,E
	3	ADEB					
-	→ 4	ADEBC					
	5						



8 Loop

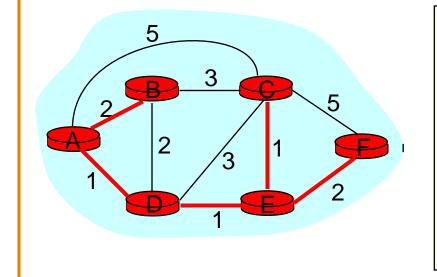
. . .

- 9 find **w** not in **S** s.t. D(w) is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:

12 If
$$D(w) + c(w,v) < D(v)$$
 then

3
$$D(v) = D(w) + c(w,v); p(v) = w;$$

	Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
	0	А	2,A	5,A	1,A	¥	¥
	1	AD		4,D		2,D	
	2	ADE		3,E			4,E
	3	ADEB					
	4	ADEBC					
_	→ 5	ADEBCF					



▶ 8 **Loop**

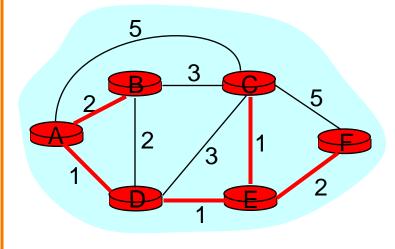
. . .

- 9 find **w** not in **S** s.t. D(w) is a minimum;
- 10 add **w** to **S**;
- 11 update D(v) for all v adjacent to w and not in S:

12 If
$$D(w) + c(w,v) < D(v)$$
 then

3
$$D(v) = D(w) + c(w,v); p(v) = w;$$

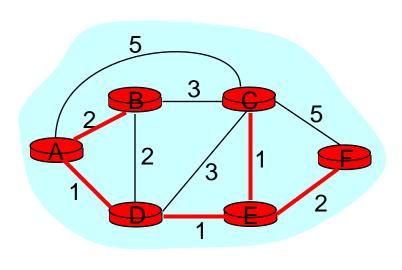
Step	start S	D(B),p(B)	D(C),p(C)	D(D),p(D)	D(E),p(E)	D(F),p(F)
0	А	2,A	5,A	(1,A)	Ě	¥
1	AD		4,D		2,D	
2	ADE		(3,E			4,E
3	ADEB					
4	ADEBC					
5	ADEBCF					



To determine path $A \rightarrow C$ (say), work backward from C via p(v)

The Forwarding Table

- Running Dijkstra at node A gives the shortest path from A to all destinations
- We then construct the forwarding table



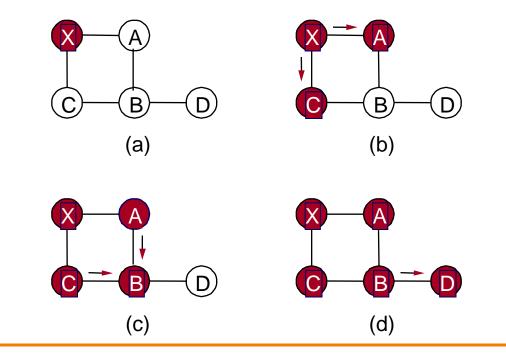
Destination	Link
В	(A,B)
С	(A,D)
D	(A,D)
E	(A,D)
F	(A,D)

Complexity

- How much processing does running the Dijkstra algorithm take?
- Assume a network consisting of N nodes
 - Each iteration: check all nodes w not in S
 - -N(N+1)/2 comparisons: O(N²)
 - More efficient implementations: O(N log(N))

Flooding the Topology Information

- Each router sends information out its ports
- The next node sends it out through all of its ports – Except the one where the information arrived
 - Need to remember previous msgs, suppress duplicates!



Making Flooding Reliable

- Reliable flooding
 - Ensure all nodes receive link-state information
 - Ensure all nodes use the latest version
- Challenges
 - Packet loss
 - -Out-of-order arrival
- Solutions
 - Acknowledgments and retransmissions
 - Sequence numbers
- How can it still fail?

When to Initiate Flood?

- Topology change
 - Link or node failure
 - Link or node recovery
- Configuration change
 - Link cost change
 - Potential problems with making cost dynamic!
- Periodically
 - Refresh the link-state information
 - Typically (say) 30 minutes
 - Corrects for possible corruption of the data

Convergence

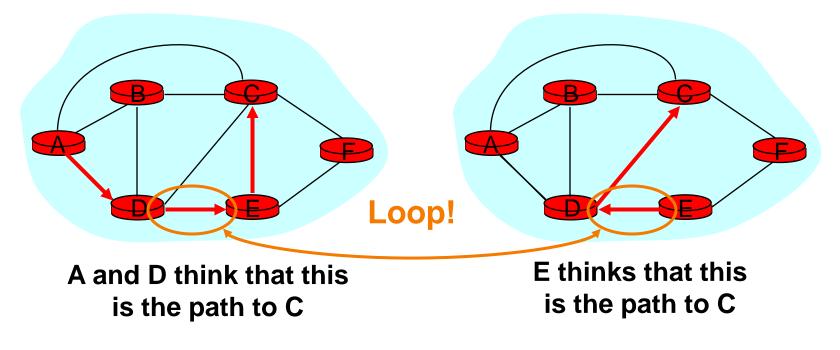
- Getting consistent routing information to all nodes -E.g., all nodes having the same link-state database
- Forwarding is consistent after convergence
 All nodes have the same link-state database
 - All nodes forward packets on same paths

Convergence Delay

- Time elapsed before every router has a consistent picture of the network
- Sources of convergence delay
 - Detection latency
 - Flooding of link-state information
 - Recomputation of forwarding tables
 - Storing forwarding tables
- Performance during convergence period
 - -Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - -Out-of-order packets reaching the destination
- Very bad for VoIP, online gaming, and video

Transient Disruptions

- Inconsistent link-state database
 - Some routers know about failure before others
 - The shortest paths are no longer consistent
 - Can cause transient forwarding loops

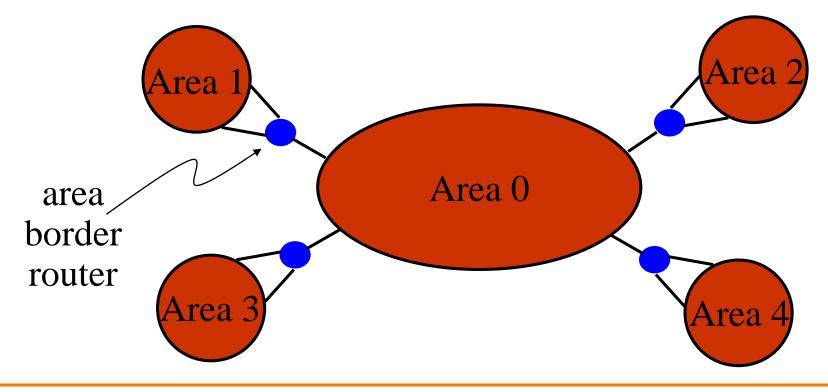


Reducing Convergence Delay

- Faster detection
 - Smaller "hello" timers
 - Link-layer technologies that can detect failures
- Faster flooding
 - Flooding immediately
 - Sending link-state packets with high-priority
- Faster computation
 - -Faster processors on the routers
 - Incremental Dijkstra algorithm
- Faster forwarding-table update
 - Data structures supporting incremental updates

Scaling Link-State Routing

- Overhead of link-state routing
 - Flooding link-state packets throughout the network
 - Running Dijkstra's shortest-path algorithm
 - Becomes unscalable when 100s of routers
- Introducing hierarchy through "areas"



39

What about other approaches?

- Link-state is essentially a centralized computation:
 Global state, local computation
- What about a more distributed approach? Local state, global computation

Learn-By-Doing

I need 40 volunteers

If you haven't participated, this is your chance!

The Task

- Remove sheet of paper from beanbag, but do not look at sheet of paper until I say so
- You will have five minutes to complete this task
- Each sheet says:

You are node X You are connected to nodes Y,Z

• Your job: find route from source (node 1) to destination (node 40) in five minutes

Ground Rules

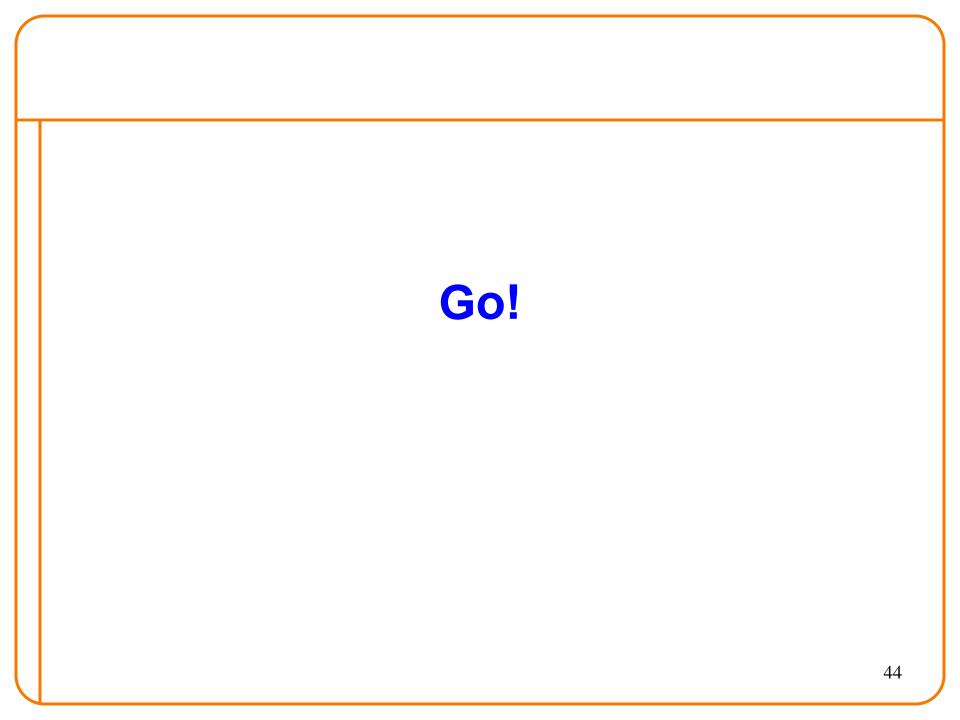
• You may not:

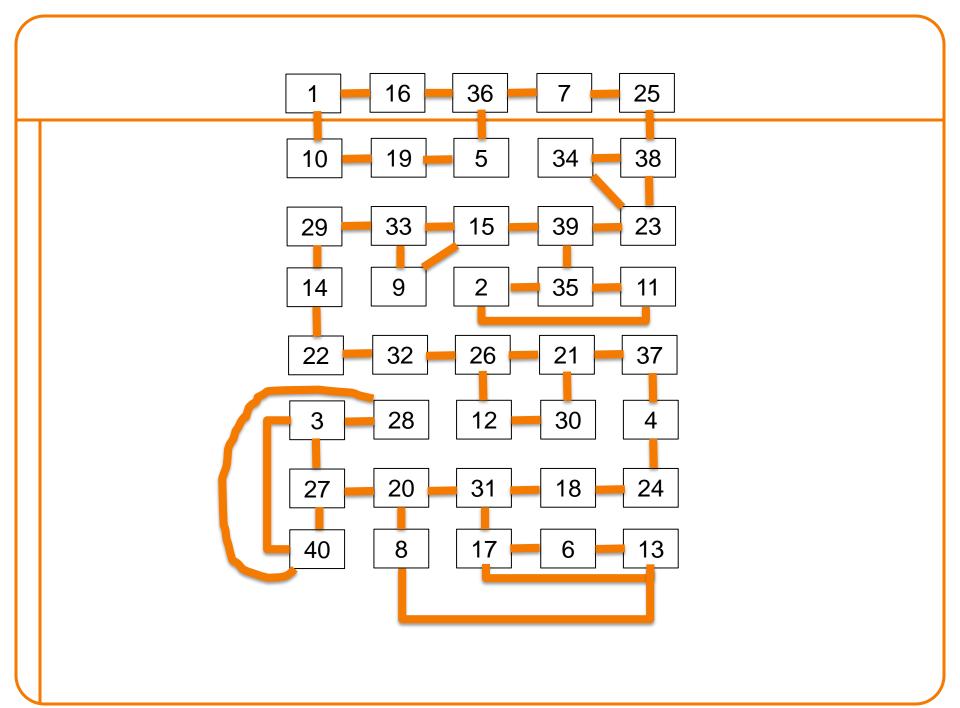
- -Leave your seat (but you can stand)
- Pass your sheet of paper
- Let anyone copy your sheet of paper

• You may:

- Ask nearby friends for advice
- Shout to other participants (anything you want)
- -Curse your instructor (sotto voce)

• You must: *Try*





Distance-Vector

Details in Section

Distributed Computation of Routes

- More scalable than Link-State – No global flooding
- Each node computing the outgoing port based on:
 - -Local information (who it is connected to)
 - Paths advertised by neighbors
- Algorithms differ in what these exchanges contain – Distance-vector: just the distance to each destination
 - Path-vector: the entire path to each destination
- We will focus on distance-vector for now

Example of Distributed Computation I am three hops away am two hops away I am one hop away I am two hops away I am two hops away I am three hops away I am one hop away **Destination** I am one hop a I am three hops away I am two hops away 48

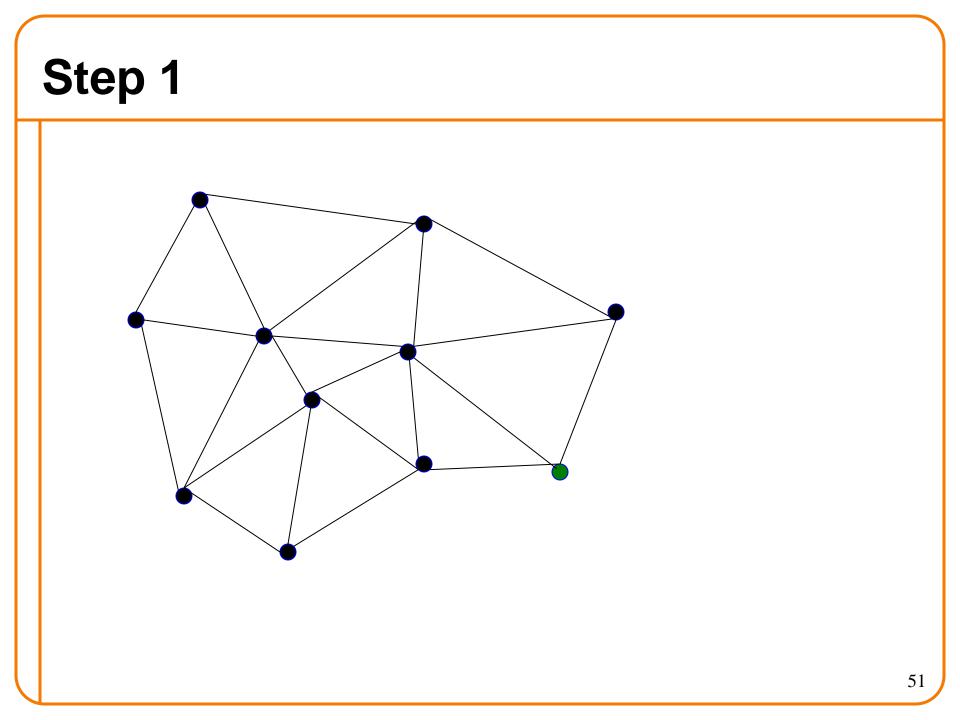
This is what you could have done

- Destination stands up
- Announces neighbors — They stand up
- They announce their neighbors

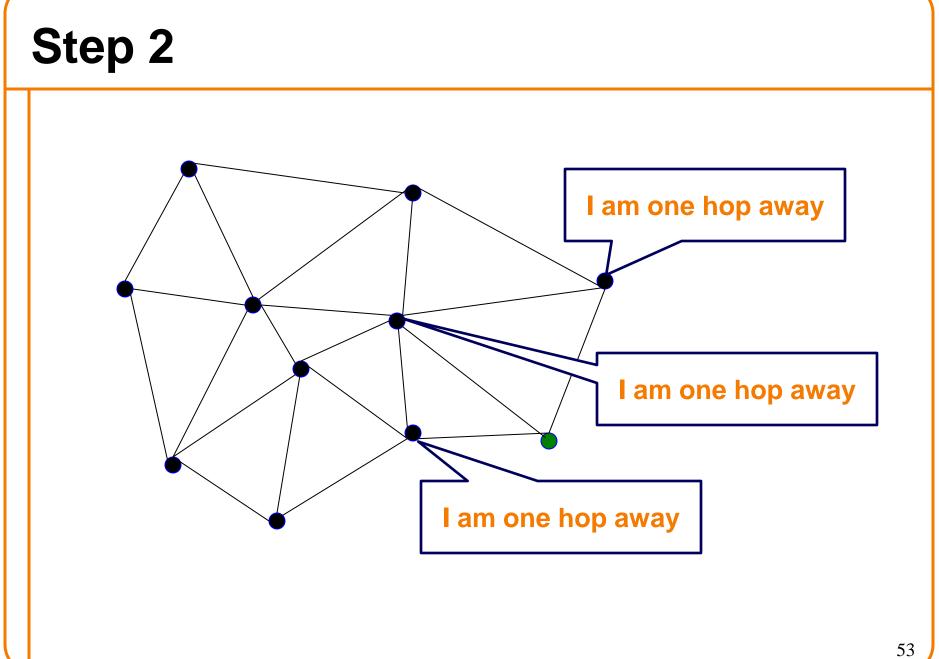
 They stand up (if they haven't already done so)
 They remember who called them to stand
-and so on, until source stands

Key point: don't stand up twice!

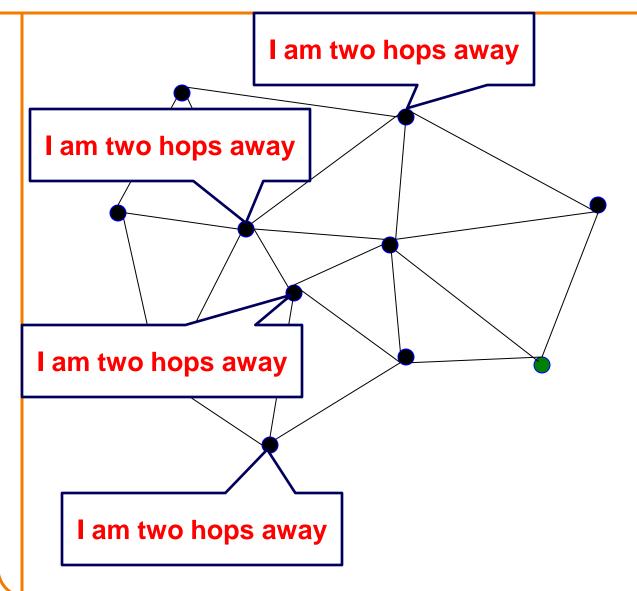
Destination stands up



- Destination stands up
- Announces neighbors – They stand up

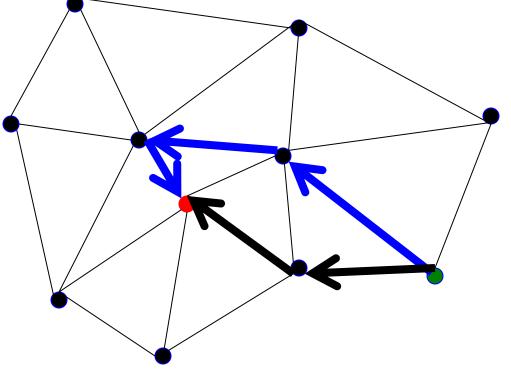


- Destination stands up
- Announces neighbors — They stand up
- They announce their neighbors — They stand up



Why Not Stand Up Twice?

- Being called a second time means that there is a second (and longer) path to you
 - -You already contacted your neighbors the first time
 - -Your distance to destination is based on shorter path



Congratulations!

- You have "implemented" Distance-Vector routing
 - For a single destination
 - -With the slowest code possible
- OK, so now let's consider this more generally....

Routing "Metrics"

- Algorithm finds path with smallest hop-count – More complicated if you route with a different metric
- Other routing goals (besides hop-count)
 - Path with highest capacity
 - Path with lowest latency
 - Path with most reliable links

-

 Generally, assume every link has "cost" or weight associated with it, and you want to minimize cost

Distance Vector Routing

- Each router knows the links to its neighbors

 Does not flood this information to the whole network
- Each router has provisional "shortest path"

 E.g.: Router A: "I can get to router B with cost 11 via next hop router D"
- Routers exchange this *Distance-Vector* information with their neighboring routers – Vector because one entry per destination
- Routers update their idea of the best path using info from neighbors
- Iterative process converges to set of shortest paths

