
1

More Routing

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Let’s focus on clarifying questions

• I love the degree of interaction in this year’s class

• But there are many people who are confused

• I’d like to give them the chance to ask about basics

• So today, let’s give priority to questions of the form
– “I don’t understand X” or “how does that work?”

• Ask speculative questions during or after break

2

Warning….

• This lecture contains detailed calculations

• Prolonged exposure may induce drowsiness

• To keep you awake I will be tossing beanbags
–Do not misplace them

–Do not read the sheet of paper attached

– If you’ve already participated, hand to nbr who hasn’t

3

Logic Refresher

• A if B means B A
– if B is true, then A is true

• A only if B means A B
– if A is true, then B is true

• A if and only if B means: A B
1. If A is true, then B is true

2. If B is true, then A is true

• To make the statement that A if and only if B, you

must prove statements 1 and 2.

4

Short Summary of Course

• Architecture, layering, E2E principle, blah, blah,…
–How functionality is organized

• There are only two important design challenges:
–Reliable Transport and Routing

• Reliable Transport:

A transport mechanism is “reliable” if and only if it

resends all dropped or corrupted packets

• Routing:

Global routing state is valid if and only if there are

no dead ends (easy) and there are no loops (hard)

5

10 Years from Now….

• If you remember nothing else from this course

except this single slide, I’ll be very happy

• If you don’t remember this slide, you have wasted

your time…

6

Previous Routing Lecture

• We assume destination-based forwarding

• The key challenge is to compute loop-free routes

• This is easy when the topology is a tree
– Loops are impossible without reversing a packet

–Flooding always will find the destination

–Can use “learning” to reduce need for flooding

• But this approach has serious disadvantages
–Can’t use entire network, must restrict to tree

–Does not react well to failures or host movement

–Universally hated by operators….

 7

Other Ways to Avoid Loops?

• If I gave you a network graph, could you define

loop-free paths to a given destination?

• Simple algorithm:
–For given source, pick an arbitrary path that doesn’t loop

–For any node not on path, draw a path that does not

contradict earlier path

–Continue until all nodes are covered

• Can pick any spanning tree rooted at destination

8

Example

9

Loops are easy to avoid…

• ..if you have the whole graph

• Centralized or pseudo-centralized computation
–Requirement: routes computed knowing global view

–One node can do calculation for everyone

–Or each node can do calculation for themselves

• But question is: how do you construct global view?

10

11

Link-State

Details in Section

12

Link-State Routing Is Conceptually Simple

• Each router keeps track of its incident links

• Each router broadcasts the link state
–To give every router a complete view of the graph

• Each router computes paths using same algorithm

• Example protocols
–Open Shortest Path First (OSPF)

– Intermediate System – Intermediate System (IS-IS)

• Challenges: scaling, transient disruptions

13

Link State Routing

• Each node floods its local information

• Each node then knows entire network topology

Host A

Host B
Host E

Host D

Host C

N1
N2

N3

N4

N5

N7 N6

14

Link State: Each Node Has Global View

Host A

Host B
Host E

Host D

Host C

N1
N2

N3

N4

N5

N7 N6

A

B
E

D

C

A

B
E

D

C
A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

A

B
E

D

C

How to Compute Routes

• Each node should have same global view

• They each compute their own routing tables

• Using exactly the same algorithm

• Can use any algorithm that avoids loops

• Computing shortest paths is one such algorithm
–Associate “cost” with links, don’t worry what it means….

–Dijkstra’s algorithm is one way to compute shortest paths

• We will review Dijkstra’s algorithm briefly
–But that’s just because it is expected from such courses

o Snore….
15

“Least Cost” Routes

• No sensible cost metric will be minimized by

traversing a loop

• “Least cost” routes an easy way to avoid loops

• Least cost routes are also “destination-based”
– i.e., do not depend on the source

–Why is this?

• Therefore, least-cost paths form a spanning tree

16

17

Example

A

E D

C B

F

2

2

1
3

1

1

2

5

3

5

Dijkstra’s Shortest Path Algorithm

• INPUT:
–Network topology (graph), with link costs

• OUTPUT:
– Least cost paths from one node to all other nodes

–Produces “tree” of routes
o Different from what we talked about before

o Previous tree was rooted at destination

o This is rooted at source

o But shortest paths are reversible!

• Warnings:
–There is a typo, but I don’t remember where (prize!)

–Most claim to know Dijkstra, but in practice they don’t

18

19

Notation

• c(i,j): link cost from node i
to j; cost infinite if not
direct neighbors; ≥ 0

• D(v): current value of cost
of path from source to
destination v

• p(v): predecessor node
along path from source to
v, that is next to v

• S: set of nodes whose
least cost path definitively
known

A

E D

C B

F

2

2

1
3

1

1

2

5

3

5

Source

20

Dijkstra’s Algorithm

1 Initialization:

2 S = {A};

3 for all nodes v

4 if v adjacent to A

5 then D(v) = c(A,v);

6 else D(v) = ;

7

8 Loop

9 find w not in S such that D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent to w and not in S:

12 if D(w) + c(w,v) < D(v) then

 // w gives us a shorter path to v than we’ve found so far

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

¥

• c(i,j): link cost from node i to j

• D(v): current cost source v

• p(v): predecessor node along
path from source to v, that is
next to v

• S: set of nodes whose least
cost path definitively known

21

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

D(B),p(B)

2,A

 D(C),p(C)

5,A

D(D),p(D)

1,A

D(E),p(E)

D(F),p(F)

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

¥ ¥

1 Initialization:

2 S = {A};

3 for all nodes v

4 if v adjacent to A

5 then D(v) = c(A,v);

6 else D(v) = ;

…
¥

22

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

D(B),p(B)

2,A

D(C),p(C)

5,A

…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

D(D),p(D)

1,A

D(E),p(E)

D(F),p(F)

¥ ¥

23

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

AD

D(B),p(B)

2,A

D(C),p(C)

5,A

D(D),p(D)

1,A

D(E),p(E)

D(F),p(F)

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

¥ ¥

…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

24

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

AD

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

¥ ¥

…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

25

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

AD

ADE

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

26

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

AD

ADE

ADEB

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

27

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

AD

ADE

ADEB

ADEBC

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

28

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
…

8 Loop

9 find w not in S s.t. D(w) is a minimum;

10 add w to S;

11 update D(v) for all v adjacent

 to w and not in S:

12 If D(w) + c(w,v) < D(v) then

13 D(v) = D(w) + c(w,v); p(v) = w;

14 until all nodes in S;

29

Example: Dijkstra’s Algorithm

Step

0

1

2

3

4

5

start S

A

AD

ADE

ADEB

ADEBC

ADEBCF

D(B),p(B)

2,A

D(C),p(C)

5,A

4,D

3,E

D(D),p(D)

1,A

D(E),p(E)

2,D

D(F),p(F)

4,E

¥ ¥

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5

To determine path A C (say),

work backward from C via p(v)

30

• Running Dijkstra at node A gives the shortest
path from A to all destinations

• We then construct the forwarding table

The Forwarding Table

A

E D

C B

F

2

2

1
3

1

1

2

5
3

5
Destination Link

B (A,B)

C (A,D)

D (A,D)

E (A,D)

F (A,D)

Complexity

• How much processing does running the Dijkstra

algorithm take?

• Assume a network consisting of N nodes
–Each iteration: check all nodes w not in S

–N(N+1)/2 comparisons: O(N2)

–More efficient implementations: O(N log(N))

31

32

Flooding the Topology Information

• Each router sends information out its ports

• The next node sends it out through all of its ports
–Except the one where the information arrived

–Need to remember previous msgs, suppress duplicates!

X A

C B D

(a)

X A

C B D

(b)

X A

C B D

(c)

X A

C B D

(d)

Making Flooding Reliable

• Reliable flooding
–Ensure all nodes receive link-state information

–Ensure all nodes use the latest version

• Challenges
–Packet loss

–Out-of-order arrival

• Solutions
–Acknowledgments and retransmissions

–Sequence numbers

• How can it still fail?

33

When to Initiate Flood?

• Topology change
– Link or node failure

– Link or node recovery

• Configuration change
– Link cost change

–Potential problems with making cost dynamic!

• Periodically
–Refresh the link-state information

–Typically (say) 30 minutes

–Corrects for possible corruption of the data

34

35

Convergence

• Getting consistent routing information to all nodes
–E.g., all nodes having the same link-state database

• Forwarding is consistent after convergence
–All nodes have the same link-state database

–All nodes forward packets on same paths

36

Convergence Delay

• Time elapsed before every router has a consistent
picture of the network

• Sources of convergence delay
–Detection latency

–Flooding of link-state information

–Recomputation of forwarding tables

–Storing forwarding tables

• Performance during convergence period
– Lost packets due to blackholes and TTL expiry

– Looping packets consuming resources

–Out-of-order packets reaching the destination

• Very bad for VoIP, online gaming, and video

37

• Inconsistent link-state database
–Some routers know about failure before others

–The shortest paths are no longer consistent

–Can cause transient forwarding loops

Transient Disruptions

A

E D

C B

F A

E D

C B

F

A and D think that this

is the path to C

E thinks that this

is the path to C

Loop!

38

Reducing Convergence Delay

• Faster detection
–Smaller “hello” timers

– Link-layer technologies that can detect failures

• Faster flooding
–Flooding immediately

–Sending link-state packets with high-priority

• Faster computation
–Faster processors on the routers

– Incremental Dijkstra algorithm

• Faster forwarding-table update
–Data structures supporting incremental updates

39

Scaling Link-State Routing

• Overhead of link-state routing
– Flooding link-state packets throughout the network

– Running Dijkstra’s shortest-path algorithm

– Becomes unscalable when 100s of routers

• Introducing hierarchy through “areas”

Area 0

Area 1 Area 2

Area 3 Area 4

area
border
router

What about other approaches?

• Link-state is essentially a centralized computation:
–Global state, local computation

• What about a more distributed approach?
–Local state, global computation

40

41

Learn-By-Doing

I need 40 volunteers

If you haven’t participated, this is your chance!

The Task

• Remove sheet of paper from beanbag, but do not

look at sheet of paper until I say so

• You will have five minutes to complete this task

• Each sheet says:

You are node X You are connected to nodes Y,Z

• Your job: find route from source (node 1) to

destination (node 40) in five minutes

42

Ground Rules

• You may not:
– Leave your seat (but you can stand)

–Pass your sheet of paper

– Let anyone copy your sheet of paper

• You may:
–Ask nearby friends for advice

–Shout to other participants (anything you want)

–Curse your instructor (sotto voce)

• You must: Try

43

Go!

44

1 16 36 7 25

10 19 5 34 38

29 33 15 39 23

14 9 2 35 11

22 32 26 21 37

3 28 12 30 4

27 20 31 18 24

40 8 17 6 13

46

Distance-Vector

Details in Section

Distributed Computation of Routes

• More scalable than Link-State
–No global flooding

• Each node computing the outgoing port based on:
– Local information (who it is connected to)

–Paths advertised by neighbors

• Algorithms differ in what these exchanges contain
–Distance-vector: just the distance to each destination

–Path-vector: the entire path to each destination

• We will focus on distance-vector for now

47

Example of Distributed Computation

48

I am one hop away

I am one hop away

I am one hop away

I am two hops away

I am two hops away

I am two hops away

I am two hops away

I am three hops away

I am three hops away

Destination
I am three hops away

This is what you could have done

• Destination stands up

• Announces neighbors
–They stand up

• They announce their neighbors
–They stand up (if they haven’t already done so)

–They remember who called them to stand

• …..and so on, until source stands

• Key point: don’t stand up twice!

49

Step 1

• Destination stands up

50

Step 1

51

Step 2

• Destination stands up

• Announces neighbors
–They stand up

52

Step 2

53

I am one hop away

I am one hop away

I am one hop away

Step 3

• Destination stands up

• Announces neighbors
–They stand up

• They announce their neighbors
–They stand up

54

Step 3

55

I am two hops away

I am two hops away

I am two hops away

I am two hops away

Why Not Stand Up Twice?

• Being called a second time means that there is a

second (and longer) path to you
–You already contacted your neighbors the first time

–Your distance to destination is based on shorter path

56

Congratulations!

• You have “implemented” Distance-Vector routing
–For a single destination

–With the slowest code possible

• OK, so now let’s consider this more generally….

57

Routing “Metrics”

• Algorithm finds path with smallest hop-count
–More complicated if you route with a different metric

• Other routing goals (besides hop-count)
–Path with highest capacity

–Path with lowest latency

–Path with most reliable links

–….

• Generally, assume every link has “cost” or weight

associated with it, and you want to minimize cost

58

59

Distance Vector Routing

• Each router knows the links to its neighbors
–Does not flood this information to the whole network

• Each router has provisional “shortest path”
–E.g.: Router A: “I can get to router B with cost 11 via

next hop router D”

• Routers exchange this Distance-Vector
information with their neighboring routers
–Vector because one entry per destination

• Routers update their idea of the best path using
info from neighbors

• Iterative process converges to set of shortest
paths

60

Information Flow in Distance Vector

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

61

Information Flow in Distance Vector

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

62

Information Flow in Distance Vector

Host A

Host B
Host E

Host D

Host C

N1 N2

N3

N4

N5

N7 N6

Why is this different from flooding?

