
1

Transport and TCP

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Announcing Project 2

• Gautam will explain everything…

2

Announcements

• HW1 grading going more slowly than anticipated

• HW2 due on Thursday

• You MUST show your work!
–Answers without reasons get no credit

–Can’t just say “That’s what the lecture said”

• Just do your best on questions 13-20
–Give us something, even though it might not be complete

–E.g., the key change in the routing table

3

Clarification #1

• Addresses in packets do not have masks

• Router has masks for entries, so it knows prefixes

• Longest prefix match means:
–See which prefixes a packet fully matches

–Pick longest prefix which is fully matched

• What this does not mean:
–Check packets against all routes and see which ones

they agree with on the most bits….

–E.g., routes 101*******(/3)… and 1*******(/1)…

–Packet 100……
4

Clarification #2

• What’s the difference between the physical

layer and the data-link layer?

• Blurry line as to which functionality belongs where

• But data-link delivers packets, with semantics in

the packet headers about local destinations, etc.

• Physical layer just delivers bits, typically just to the

logical endpoint of the connection (or broadcasted)
–No routing as part of the definition of the layer

5

Clarification #3

• When is a port not a port?

• When one is a transport port, and the other is a

switch port.
–The two have nothing to do with each other….

6

Clarification #4

• Please do not post your project code!

• We have two choices:
–Come up with new projects every year

o Frequently ends in disasters, students not happy

–Reuse projects, hone them until everything works
o But we can’t have project code being posted

• So don’t post your code!

7

Agenda

• My proposal for addressing

• Transport Layer

• TCP

• I have 90 slides, so fasten your seat belts…

8

9

My Addressing Proposal

My proposal for addressing

• Return to original IP addressing scheme (mostly)
–Network name followed by host name

• Domains use any host naming system they want

• Can have a hierarchy of network addresses
–Examples: Network:Host or N1:N2:H

• All names tied to keys
–N is hash of network’s public key

–H is hash of host’s public key

10

Advantages

• Addresses are verifiable (challenge-response)
–Prove to me that this is your address!

–N signs something and sends it with his public key

• Multihoming natural: host is both N1:H and N2:H

• Routing is exact match (much easier)

• Scaling not a problem…
–Not that many network addresses

–Can add extra layers of hierarchy if needed

11

Back to the future

• Original Internet addressing scheme was perfect

• Except:
–Not enough network addresses

–Fixed format for host addresses

–No cryptographic verification of addresses

• Solution does not address anonymity

12

Biggest advantage…..

• Interdomain routing done just on N addresses
–Everyone must understand N addresses

• Intradomain routing done on H addresses
–Only my domain needs to understand H addresses

–Domain could unilaterally upgrade from IPv4 to IPv6

• Universal agreement only on domain addressing
–Which is what the original network design called for…

13

14

Transport Layer

15

Role of Transport Layer

• Application layer
–Communication for specific applications

–E.g., HyperText Transfer Protocol (HTTP), File Transfer

Protocol (FTP), Network News Transfer Protocol (NNTP)

• Transport layer
–Communication between processes (e.g., socket)

–Relies on network layer; serves the application layer

–E.g., TCP and UDP

• Network layer
– Logical communication between nodes

–Hides details of the link technology

–E.g., IP

16

Role of Transport Layer

• Application layer
–Communication for specific applications

–E.g., HyperText Transfer Protocol (HTTP), File Transfer

Protocol (FTP), Network News Transfer Protocol (NNTP)

• Transport layer
–Communication between processes (e.g., socket)

–Relies on network layer; serves the application layer

–E.g., TCP and UDP

• Network layer
–Global communication between nodes

–Hides details of the link technology

–E.g., IP

17

Role of Transport Layer

• Application layer
–Communication for specific applications

–E.g., HyperText Transfer Protocol (HTTP), File Transfer

Protocol (FTP), Network News Transfer Protocol (NNTP)

• Transport layer
–Communication between processes (e.g., socket)

–Relies on network layer; serves the application layer

–E.g., TCP and UDP

• Network layer
– Logical communication between nodes

–Hides details of the link technology

–E.g., IP

Role of Transport Layer

• Provide common end-to-end services for app layer
–Deal with network on behalf of applications

–Deal with applications on behalf of networks

• Could have been built into apps, but want common

implementations to make app development easier
–Since TCP runs on end host, this is about software

modularity, not overall network architecture

18

What Problems Should Be Solved Here?

• Applications think in terms of files or bytestreams
–Network deals with packets

–Transport layer needs to translate between them

• Where does host put incoming data?
– IP just points towards next protocol

–How do you get data to the right application?

–Transport needs to demultiplex incoming data (ports)

• Reliability (for those apps that want it)

• Corruption (Why?)

• Overloading the receiving host? The network?

19

What Is Needed to Address These?

• Translating between bytestreams and packets
–Do segmentation and reassembly

• Demultiplexing: identifier for application process

• Reliability: ACKs and all that stuff
–Pieces we haven’t covered: RTT estimation, formats

• Corruption: checksum

• Not overloading receiver: limit data in recvr’s buffer

• Not overloading network: later in semester

 20

Conclusion?

• Transport is easy!
– except congestion control, which we cover later…

• Rest of lecture just diving into details
–Nothing is fundamental

–These are just current implementation choices

21

22

Logical View of Transport Protocols

• Provide logical communication

between application processes

running on different hosts

• Sender: breaks application

messages into segments,

and passes to network layer

• Receiver: reassembles

segments into messages,

passes to application layer

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

23

UDP: Datagram messaging service

• No-frills extension of “best-effort” IP

• Multiplexing/Demultiplexing among processes

• Discarding corrupted packets (optional)

24

TCP: Reliable, in-order delivery

• What UDP provides, plus:

• Retransmission of lost and corrupted packets

• Flow control (to not overflow receiver)

• Congestion control (to not overload network)

• “Connection” set-up & tear-down

Connections (or sessions)

• Reliability requires keeping state
–Sender: packets sent but not ACKed, and related timers

–Receiver: noncontiguous packets

• Each bytestream is called a connection or session
–Each with their own connection state

–State is in hosts, not network!

• Example: I am using HTTP to access content on

two different hosts, and I’m also ssh’ing into

another host. How many sessions is this?

25

26

Services not available

• Delay and/or bandwidth guarantees
–This is fundamental to the transport layer

• Sessions that survive change-of-IP-address
–This is an artifact of current implementations

4-bit

Version

4-bit

Header

Length

8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

Payload

4 5
8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

4 5
8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
6 = TCP

17 = UDP
16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

4 5
8-bit

Type of Service

(TOS)

16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to

Live (TTL)
6 = TCP

17 = UDP
16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

16-bit Source Port 16-bit Destination Port

More transport header fields ….

31

Multiplexing and Demultiplexing

• Host receives IP datagrams

–Each datagram has source

and destination IP address,

–Each segment has source

and destination port number

• Host uses IP addresses and

port numbers to direct the

segment to appropriate socket

source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Directing packets to process

• UDP: uses destination port (and address)

• TCP: uses source/destination ports and addresses
– (src_IP, src_port, dst_IP, dst_port)

• Why the difference?

• Implications for mobility?

32

33

UDP: User Datagram Protocol

• Lightweight communication between processes
–Avoid overhead and delays of ordered, reliable delivery

–Send messages to and receive them from a socket

• UDP described in RFC 768 – (1980!)
– IP plus port numbers to support (de)multiplexing

–Optional error checking on the packet contents
o (checksum field = 0 means “don’t verify checksum”)

 SRC port DST port

checksum length

DATA

34

Why Would Anyone Use UDP?

• Finer control over what data is sent and when
–As soon as an application process writes into the socket

–… UDP will package the data and send the packet

• No delay for connection establishment
–UDP just blasts away without any formal preliminaries

–… which avoids introducing any unnecessary delays

• No connection state
–No allocation of buffers, sequence #s, timers …

–… making it easier to handle many active clients at once

• Small packet header overhead
–UDP header is only 8 bytes

35

Popular Applications That Use UDP

• Some interactive streaming apps
–Retransmitting lost/corrupted packets often pointless - by

the time the packet is retransmitted, it’s too late

–E.g., telephone calls, video conferencing, gaming

–Modern streaming protocols using TCP (and HTTP)

• Simple query protocols like Domain Name System
–Connection establishment overhead would double cost

–Easier to have application retransmit if needed

“Address for bbc.co.uk?”

“212.58.224.131”

36

Transmission Control Protocol (TCP)

• Connection oriented (today)

–Explicit set-up and tear-down of TCP session

• Full duplex stream-of-bytes service (today)

–Sends and receives a stream of bytes, not messages

• Congestion control (later)

–Dynamic adaptation to network path’s capacity

• Reliable, in-order delivery (previously, but quick review)

–Ensures byte stream (eventually) arrives intact
o In the presence of corruption and loss

• Flow control (previously, but quick review)

– Ensures that sender doesn’t overwhelm receiver

37

TCP

We’ve been studying the general

properties of reliable transport. We

now learn about how they are

implemented today.

38

TCP Support for Reliable Delivery

• Checksum
– Used to detect corrupted data at the receiver

– …leading the receiver to drop the packet

• Sequence numbers
– Used to detect missing data

– ... and for putting the data back in order

• Retransmission
– Sender retransmits lost or corrupted data

– Timeout based on estimates of round-trip time

– Fast retransmit algorithm for rapid retransmission

39

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

40

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

These should

be familiar

41

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Starting

sequence

number (byte

offset) of data

carried in this

segment

42

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment

gives seq # just

beyond highest

seq. received in

order.

 “What’s Next”

If sender sends

N in-order bytes

starting at seq S

then ack for it will

be S+N.

43

ACKing and Sequence Numbers

• Sender sends packet
– Data starts with sequence number X

– Packet contains B bytes
o X, X+1, X+2, ….X+B-1

• Upon receipt of packet, receiver sends an ACK
– If all data prior to X already received:

o ACK acknowledges X+B (because that is next expected byte)

– If highest byte already received is some smaller value Y
o ACK acknowledges Y+1

o Even if this has been ACKed before

• Sender sends(?) next packet with seqno X+B

Normal Pattern

• Sender: seqno=X, length=B

• Receiver: ACK=X+B

• Sender: seqno=X+B, length=B

• Receiver: ACK=X+2B

• Sender: seqno=X+2B, length=B

• Seqno of next packet is same as last ACK field

44

45

5 Minute Break

Anagram Contest

• What does this numerical anagram have to do with

this alphabetical one?
–Alphabetical: A Tragic Con

–Numerical: 01235688

46

Anagram Contest

• What does this numerical anagram have to do with

this alphabetical one?
–Alphabetical: A Tragic Con

–Numerical: 01235688

• UC Berkeley was founded by the Organic Act

which was passed on 05/23/1868

47

48

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Buffer space

available for

receiving data.

Used for TCP’s

sliding window.

Interpreted as

offset beyond

Acknowledgment

field’s value.

49

Sliding Window Flow Control

• Advertised Window: W
– Can send W bytes beyond the next expected byte

• Receiver uses W to prevent sender from

overflowing buffer
– Limits number of bytes sender can have in flight

Filling the Pipe

• Simple example:
–W (in bytes), which we assume is constant

–RTT (in sec), which we assume is constant

–B (in bytes/sec)

• How fast will data be transferred?

• If W/RTT < B, the transfer has speed W/RTT

• If W/RTT > B, the transfer has speed B

50

Performance with Sliding Window

• Consider UCB NYC 1 Mbps path (100msec RTT)
–Q1: How fast can we transmit with W=12.5KB? (~8pkts)

–A: 12.5KB/100msec ~ 1Mbps (we can fill the pipe)

• Q2: What if path is 1Gbps?
–A2: Can still only send 1Mbps

• Window required to fully utilize path:
–Bandwidth-delay product

– 1 Gbps * 100 msec = 100 Mb = 12.5 MB

– 12.5 MB ~ 8333 packets of 1500bytes (lots of packets!)

51

52

Advertised Window Limits Rate

• Sender can send no faster than W/RTT bytes/sec

• Receiver only advertises more space when it has

consumed old arriving data

• In original TCP design, that was the sole protocol

mechanism controlling sender’s rate

• What’s missing?

53

Implementing Sliding Window

• Both sender & receiver maintain a window
–Sender: not yet ACK’ed

–Receiver: not yet delivered to application

• Left edge of window:
–Sender: beginning of unacknowledged data

–Receiver: beginning of undelivered data

• For the sender:
–Window size = maximum amount of data in flight

• For the receiver:
–Window size = maximum amount of undelivered data

54

Sliding Window

• Allow a larger amount of data “in flight”
–Allow sender to get ahead of the receiver

–… though not too far ahead

Sending process Receiving process

Last byte ACKed

Last byte can send

TCP TCP

Next byte needed

Last byte written Last byte read

Last byte received

Sender Window

Receiver Window

55

Sliding Window

Sending process

Last byte ACKed

Last byte can send

TCP
Last byte written

Sender Window

• For the sender, when receives an

acknowledgment for new data, window advances

(slides forward)

56

Sliding Window

• For the sender, when receives an

acknowledgment for new data, window advances

(slides forward)

Sending process

Last byte ACKed

Last byte can send

TCP
Last byte written

Sender Window

57

Sliding Window

• For the receiver, as the receiving process

consumes data, the window slides forward

Receiving process

TCP

Next byte needed

Last byte read

Last byte received Receiver Window

58

Sliding Window

• For the receiver, as the receiving process

consumes data, the window slides forward

Receiving process

TCP

Next byte needed

Last byte read

Last byte received Receiver Window

59

Sliding Window, con’t

• Sender: window advances when new data ack’d

• Receiver: window advances as receiving process
consumes data

• Receiver advertises to the sender where the
receiver window currently ends (“righthand
edge”)
–Sender agrees not to exceed this amount

– It makes sure by setting its own window size to a value
that can’t send beyond the receiver’s righthand edge

60

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Number of 4-byte

words in TCP

header;

5 = no options

61

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

62

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

We will get to

these shortly

63

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Used with URG

flag to indicate

urgent data (not

discussed further)

64

Segments and Sequence Numbers

65

TCP “Stream of Bytes” Service

Host A

Host B

66

… Provided Using TCP “Segments”

Host A

Host B

TCP Data

TCP Data

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application.

67

TCP Segment

• IP packet
–No bigger than Maximum Transmission Unit (MTU)

–E.g., up to 1,500 bytes on an Ethernet

• TCP packet
– IP packet with a TCP header and data inside

–TCP header  20 bytes long

• TCP segment
–No more than Maximum Segment Size (MSS) bytes

–E.g., up to 1460 consecutive bytes from the stream

–MSS = MTU – (IP header) – (TCP header)

IP Hdr
IP Data

TCP Hdr TCP Data (segment)

68

Sequence Numbers

Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence
number = 1st

byte ACK sequence
number = next
expected byte

69

Initial Sequence Number (ISN)

• Sequence number for the very first byte
–E.g., Why not just use ISN = 0?

• Practical issue
– IP addresses and port #s uniquely identify a connection

–Eventually, though, these port #s do get used again

–… small chance an old packet is still in flight

• TCP therefore requires changing ISN
–Set from 32-bit clock that ticks every 4 microseconds

–… only wraps around once every 4.55 hours

• To establish a connection, hosts exchange ISNs
–How does this help?

70

Connection Establishment:

TCP’s Three-Way Handshake

71

Establishing a TCP Connection

• Three-way handshake to establish connection
–Host A sends a SYN (open; “synchronize sequence

numbers”) to host B

–Host B returns a SYN acknowledgment (SYN ACK)

–Host A sends an ACK to acknowledge the SYN ACK

A B

Each host tells

its ISN to the

other host.

72

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised window HdrLen Flags 0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN

ACK

FIN

RST

PSH

URG

See /usr/include/netinet/tcp.h on Unix Systems

73

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window 5=20B Flags 0

Checksum Urgent pointer

Options (variable)

Flags: SYN

ACK

FIN

RST

PSH

URG

A tells B it wants to open a connection…

74

Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window 20B 0

Checksum Urgent pointer

Options (variable)

Flags: SYN

ACK

FIN

RST

PSH

URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags

75

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window 20B Flags 0

Checksum Urgent pointer

Options (variable)

Flags: SYN

ACK

FIN

RST

PSH

URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data

76

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server
Active

Open

Passive

Open

connect()

listen()

accept()

77

What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
–Packet is lost inside the network, or:

–Server discards the packet (e.g., listen queue is full)

• Eventually, no SYN-ACK arrives
–Sender sets a timer and waits for the SYN-ACK

–… and retransmits the SYN if needed

• How should the TCP sender set the timer?
–Sender has no idea how far away the receiver is

–Hard to guess a reasonable length of time to wait

–SHOULD (RFCs 1122 & 2988) use default of 3 seconds
o Other implementations instead use 6 seconds

78

SYN Loss and Web Downloads

• User clicks on a hypertext link
–Browser creates a socket and does a “connect”

–The “connect” triggers the OS to transmit a SYN

• If the SYN is lost…
– 3-6 seconds of delay: can be very long

–User may become impatient

–… and click the hyperlink again, or click “reload”

• User triggers an “abort” of the “connect”
–Browser creates a new socket and another “connect”

–Essentially, forces a faster send of a new SYN packet!

–Sometimes very effective, and the page comes quickly

79

Tearing Down the Connection

80

Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes
– FIN occupies one octet in the sequence space

• Other host ack’s the octet to confirm

• Closes A’s side of the connection, but not B’s
– Until B likewise sends a FIN

– Which A then acks

time
A

B

Timeout:

Avoid reincarnation

B will retransmit FIN
if ACK is lost

Connection

now half-closed

Connection

now closed

81

Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

time
A

B

Connection

now closed

Timeout:

Avoid reincarnation

Can retransmit
FIN ACK if ACK lost

82

Abrupt Termination

• A sends a RESET (RST) to B
– E.g., because app. process on A crashed

• That’s it
– B does not ack the RST

– Thus, RST is not delivered reliably

– And: any data in flight is lost

– But: if B sends anything more, will elicit another RST

time
A

B

83

Reliability: TCP Retransmission

84

Setting Timeout Value

• Sender sets a timeout to wait for an ACK
–Too short: wasted retransmissions

–Too long: excessive delays when packet lost

• TCP sets retransmission timeout (RTO) as

function of RTT
–Expect ACK to arrive roughly an RTT after data sent

–… plus slop to allow for variations (e.g., queuing, MAC)

• But: how do we measure RTT?

• And: what is a good estimate for RTT?

• And: what’s a good estimate for “slop”?

85

Problem: Ambiguous Measurement

• How to differentiate between the real ACK, and

ACK of the retransmitted packet?

S
a
m

p
le

R
T

T
 ?

Sender Receiver

S
a
m

p
le

R
T

T
 ?

Sender Receiver

86

Karn/Partridge Algorithm

• Measure SampleRTT only for original transmissions
–Once a segment has been retransmitted, do not use it for

any further measurements

• Also, employ exponential backoff
–Every time RTO timer expires, set RTO  2·RTO

– (Up to maximum  60 sec)

–Every time new measurement comes in (= successful

original transmission), collapse RTO back to computed

value

Next Step

• Turn these individual RTT measurements into an

estimate of RTT that we can use to compute RTO

• Challenge:
–Average RTT, but recent values more important

87

Exponential Averaging

Exponential Averaging:

• Estimate(n) = α Estimate(n-1) + (1-α) Value(n)

Expanding:

• Estimate(n) = (1-α) Sum {αk Value(n-k)}

• Weight on historical data decreases exponentially

88

89

RTT Estimation

• Use exponential averaging:

SampleRTT = AckRcvdTime - SendPacketTime

EstimatedRTT = a ´ EstimatedRTT + (1-a) ´ SampleRTT

a = 7 /8 (for one measurement per flight)

E
st

im
a

te
d

R
T

T

Time

SampleRTT

Jacobson/Karels Algorithm

• Compute “slop” in terms of observed variability
– standard deviation requires expensive square root

–Use mean deviation instead

• Deviation = | SampleRTT – EstimatedRTT |

• EstimatedDeviation: exp. average of Deviation

• RTO = EstimatedRTT + 4 x EstimatedDeviation

90

This is all very interesting, but…..

• Implementations often use a coarse-grained timer
– 500 msec is typical

• So what?
–Above algorithms are largely irrelevant

– Incurring a timeout is expensive

• So we rely on duplicate ACKs

91

