
1

1

DNS and the Web

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Announcements

• Midterm on Thursday
–Closed book

–Crib sheet: 2-sided, 8pt font minimum.

• Midterm will not cover details from today’s lecture
–You should know role basic concepts and roles

o DNS resolves names to addresses

o Differences between names and addresses

o HTTP retrieves content, is app-layer protocol

o Content is named relative to hosts

o ……..

• Review on Tuesday
2

Today: DNS and Web

• How many people already know how they work?

• Today is not about the details of these

mechanisms, but about what roles they fulfill
–Section will fill in the details….

3 4

DNS

Naming

• Internet has one global system of addressing: IP
–By explicit design

• And one global system of naming: DNS
–Almost by accident, naming was an afterthought

• At the time, only items worth naming were hosts
–A mistake that causes many painful workarounds

• Everything is now named relative to a host
–Content is most notable example (URL structure)

5

Logical Steps in Using Internet

• Person has name of entity she wants to access
–Content, host, etc.

• Invokes an application to perform relevant task
–Using that name (e.g., www.cnn.com)

• App invokes DNS to translate name to address
–E.g. 157.166.255.18

• App invokes transport protocol to contact host
–Using address as destination

6

2

Addresses vs Names

• Scope of relevance:
–App/user is primarily concerned with names

–Network is primarily concerned with addresses

• Frequency:
–Name address lookup once (or get from cache)

–Address physical port lookup on each packet

• When moving a host to a different subnet:
–The address changes

–The name does not change

• When moving content to a differently named host
–Name and address both change! (should it?)

7 8

Relationship Betw’n Names/Addresses

• Addresses can change underneath
–Move www.cnn.com to 4.125.91.21

–Humans/Apps should be unaffected

• Name could map to multiple IP addresses
–www.cnn.com to multiple replicas of the Web site

–Enables
o Load-balancing

o Reducing latency by picking nearby servers

• Multiple names for the same address
–E.g., aliases like www.cnn.com and cnn.com

–Mnemonic stable name, and dynamic canonical name
o Canonical name = actual name of host

Mapping from Names to Addresses

• Originally: per-host file /etc/hosts
–SRI (Menlo Park) kept master copy

–Downloaded regularly

–Flat namespace

• Single server not resilient, doesn’t scale
–Adopted a distributed hierarchical system

• Two intertwined hierarchies:
– Infrastructure: hierarchy of DNS servers

–Naming structure: www.cnn.com

9 10

Domain Name System (DNS)

• Top of hierarchy: Root
– Location hardwired into other servers

• Next Level: Top-level domain (TLD) servers
– .com, .edu, etc.

–Managed professionally

• Bottom Level: Authoritative DNS servers
–Actually do the mapping

–Can be maintained locally or by a service provider

11

Distributed Hierarchical Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

Top-Level Domains (TLDs)

12

DNS Root

• Located in Virginia, USA

• How do we make the root scale?

 Verisign, Dulles, VA

3

13

DNS Root Servers

• 13 root servers (see http://www.root-servers.org/)
– Labeled A through M

• Does this scale?

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA

E NASA Mt View, CA

F Internet Software

 Consortium

 Palo Alto, CA

I Autonomica, Stockholm

K RIPE London

M WIDE Tokyo

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign

14

DNS Root Servers

• 13 root servers (see http://www.root-servers.org/)
– Labeled A through M

• Replication via any-casting (localized routing for addresses)

B USC-ISI Marina del Rey, CA

L ICANN Los Angeles, CA

E NASA Mt View, CA

F Internet Software

 Consortium,

 Palo Alto, CA

 (and 37 other locations)

I Autonomica, Stockholm

(plus 29 other locations)

K RIPE London (plus 16 other locations)

M WIDE Tokyo

 plus Seoul, Paris,

 San Francisco

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)

D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

J Verisign (21 locations)

Refresher course on anycast

• Routing finds shortest paths to destination

• If several locations are given the same address,

then the network will deliver the packet to the

closest location with that address

• This is called “anycast”
–But no modification of routing is needed for this….

15

Was Hierarchy Necessary?

• Two aspects of hierarchy:
–Name resolution: walk up/down hierarchy

–Name allocation: control over namespace partitioned

• How to handle both without hierarchy?
–Any ideas?

• Resolution: Google
– scalable key-value store

• Allocation:
–Statistically unique names (random) 16

17

Using DNS

• Two components
– Local DNS servers

–Resolver software on hosts

• Local DNS server (“default name server”)
–Usually near the endhosts that use it

– Local hosts configured with local server (e.g.,

/etc/resolv.conf) or learn server via DHCP

• Client application
–Extract server name (e.g., from the URL)

–Do gethostbyname() to trigger resolver code

Many of you have complained….

• …that applications knowing addresses is a

violation of layering

• What do people think?

• My opinion:
– Layers are highly modular abstractions

– Implementations are not very modular
o Violate modularity in several places. This is one of them.

• Applications handling addresses as bags of bits is

ok, but “understanding addresses” is not 18

4

19

requesting host
cis.poly.edu gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

How Does Resolution Happen?

Host at cis.poly.edu

wants IP address for
gaia.cs.umass.edu

20

Recursive vs. Iterative Queries

• Recursive query
–Ask server to get

answer for you

–E.g., request 1

and response 8

• Iterative query
–Ask server who

to ask next

–E.g., all other

request-response

pairs
requesting host
cis.poly.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server

dns.cs.umass.edu

7
8

TLD DNS server

21

DNS Caching

• Performing all these queries takes time
–And all this before actual communication takes place

–E.g., 1-second latency before starting Web download

• Caching can greatly reduce overhead
–The top-level servers very rarely change

–Popular sites (e.g., www.cnn.com) visited often

– Local DNS server often has the information cached

• How DNS caching works
–DNS servers cache responses to queries

–Responses include a “time to live” (TTL) field

–Server deletes cached entry after TTL expires

22

Negative Caching

• Remember things that don’t work
–Misspellings like www.cnn.comm and www.cnnn.com

–These can take a long time to fail the first time

–Good to remember that they don’t work

–… so the failure takes less time the next time around

• But: negative caching is optional
–And not widely implemented

23

DNS Resource Records

DNS: distributed DB storing resource records (RR)

• Type=NS
– name is domain (e.g. foo.com)

– value is hostname of authoritative name
server for this domain

• Type=PTR

– name is reversed IP quads
o E.g. 78.56.34.12.in-addr.arpa

– value is corresponding
 hostname

RR format: (name, value, type, ttl)

• Type=A
– name is hostname

– value is IP address

• Type=CNAME
– name is alias name for some

“canonical” name

 E.g., www.cs.mit.edu is really

 eecsweb.mit.edu

– value is canonical name

• Type=MX
– value is name of mailserver

associated with name

– Also includes a weight/preference

24

DNS Protocol

DNS protocol: query and reply messages, both with
same message format

Message header:

• Identification: 16 bit # for

query, reply to query uses

same #

• Flags:

– Query or reply

– Recursion desired

– Recursion available

– Reply is authoritative

• Plus fields indicating size

(0 or more) of optional

header elements

Additional information

(variable # of resource records)

Questions

(variable # of resource records)

Answers

(variable # of resource records)

Authority

(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

5

25

Reliability

• DNS servers are replicated (primary/secondary)
–Name service available if at least one replica is up

–Queries can be load-balanced between replicas

• Usually, UDP used for queries (why???)
–Need reliability: must implement this on top of UDP

–Spec supports TCP too, but not always implemented

• Try alternate servers on timeout
–Exponential backoff when retrying same server

• Same identifier for all queries
–Don’t care which server responds

26

Inserting Resource Records into DNS

• Example: just created startup “FooBar”

• Get a block of address space from ISP
–Say 212.44.9.128/25

• Register foobar.com at Network Solutions (say)
–Provide registrar with names and IP addresses of your

authoritative name server (primary and secondary)
–Registrar inserts RR pairs into the com TLD server:

o (foobar.com, dns1.foobar.com, NS)

o (dns1.foobar.com, 212.44.9.129, A)

• Put in your (authoritative) server
dns1.foobar.com:
–Type A record for www.foobar.com

–Type MX record for foobar.com

DNS Measurements (MIT data from 2000)

• What is being looked up?
–~60% requests for A records

–~25% for PTR records

–~5% for MX records

–~6% for ANY records

• How long does it take?
–Median ~100msec (but 90th percentile ~500msec)

– 80% have no referrals; 99.9% have fewer than four

• Query packets per lookup: ~2.4
–But this is misleading…. 27

DNS Measurements (MIT data from 2000)

• Does DNS give answers?
–~23% of lookups fail to elicit an answer!

–~13% of lookups result in NXDOMAIN (or similar)
o Mostly reverse lookups

–Only ~64% of queries are successful!
o How come the web seems to work so well?

• ~ 63% of DNS packets in unanswered queries!
–Failing queries are frequently retransmitted

– 99.9% successful queries have ≤2 retransmissions

28

Moral of the Story

• If you design a highly resilient system, many things

can be going wrong without you noticing it!

29

DNS Measurements (MIT data from 2000)

• Top 10% of names accounted for ~70% of lookups
–Caching should really help!

• 9% of lookups are unique
–Cache hit rate can never exceed 91%

• Cache hit rates ~ 75%
–But caching for more than 10 hosts doesn’t add much

30

6

A Common Pattern…..

• Distributions of various metrics (file lengths,

access patterns, etc.) often have two properties:
– Large fraction of total metric in the top 10%

–Sizable fraction (~10%) of total fraction in low values

• In an exponential distribution
– Large fraction is in top 10%

–But low values have very little of overall total

• Lesson: have to pay attention to both ends of dist.

• Here: caching helps, but not a panacea
31

DNS and Security

• No way to verify answers
–Opens up DNS to many potential attacks

–DNSSEC fixes this

• Most obvious vulnerability: recursive resolution
–Using recursive resolution, host must trust DNS server

–When at Starbucks, server is under their control

–And can return whatever values it wants

• More subtle attack: Cache poisoning
–Those “additional” records can be anything!

32

33

Cache Poisoning

• Suppose you are a Bad Guy and you control the
name server for foobar.com. You receive a request
to resolve www.foobar.com and reply:

;; QUESTION SECTION:

;www.foobar.com. IN A

;; ANSWER SECTION:

www.foobar.com. 300 IN A 212.44.9.144

;; AUTHORITY SECTION:

foobar.com. 600 IN NS dns1.foobar.com.

foobar.com. 600 IN NS google.com.

;; ADDITIONAL SECTION:

google.com. 5 IN A 212.44.9.155

A foobar.com machine, not google.com

Evidence of the attack

disappears 5 seconds

later!

34

The Web

35

The Web – Precursor

• 1967, Ted Nelson, Xanadu:
–A world-wide publishing network

that would allow information to be

stored not as separate files but as

connected literature

–Owners of documents would be

automatically paid via electronic

means for the virtual copying of

their documents

• Coined the term “Hypertext”
– Influenced research community

o Who then missed the web…..

Ted Nelson

36

The Web – History

• Physicist trying to solve real problem
–Distributed access to data

• World Wide Web (WWW): a

distributed database of “pages”
linked through Hypertext Transport

Protocol (HTTP)
–First HTTP implementation - 1990

o Tim Berners-Lee at CERN

–HTTP/0.9 – 1991
o Simple GET command for the Web

–HTTP/1.0 –1992
o Client/Server information, simple caching

–HTTP/1.1 - 1996

Tim Berners-Lee

http://images.google.com/imgres?imgurl=http://www.janelanaweb.com/digitais/imagens/nelson.gif&imgrefurl=http://www.janelanaweb.com/digitais/alquimistanelson.html&h=204&w=150&sz=55&tbnid=IDD4qt-_U98J:&tbnh=97&tbnw=72&start=15&prev=/images?q=ted+nelson&hl=en&lr=&sa=N
http://www.w3.org/Press/Stock/Berners-Lee/2001-eur-head-quarter.jpg

7

Why Didn’t CS Research Invent Web?

HTML is precisely what we were trying to PREVENT— ever-

breaking links, links going outward only, quotes you can't

follow to their origins, no version management, no rights

management.

– Ted Nelson

Academics get paid for being clever,

not for being right.

–Don Norman

37

Why So Successful?

• What do the web, youtube, fb have in common?
–The ability to self-publish

• Self-publishing that is easy, independent, free

• No interest in collaborative and idealistic endeavor
–People aren’t looking for Nirvana (or even Xanadu)

–People also aren’t looking for technical perfection

• Want to make their mark, and find something neat
–Two sides of the same coin, creates synergy

– “Performance” more important than dialogue…. 38

39

Web Components

• Infrastructure:
–Clients

–Servers

–Proxies

• Content:
– Individual objects (files, etc.)

–Web sites (coherent collection of objects)

• Implementation
–HTML: formatting content

–URL: naming content

–HTTP: protocol for exchanging content

40

HTML: HyperText Markup Language

• A Web page has:
–Base HTML file

–Referenced objects (e.g., images)

• HTML has several functions:
–Format text

–Reference images

–Embed hyperlinks (HREF)

41

URL Syntax

protocol://hostname[:port]/directorypath/resource

protocol http, ftp, https, smtp, rtsp, etc.

hostname DNS name, IP address

port Defaults to protocol’s standard port
e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=%40B%40Bulk&

MsgId=2604_1744106_29699_1123_1261_0_28917_3552_128995

7100&Search=&Nhead=f&YY=31454&order=down&sort=date&pos

=0&view=a&head=b
42

HyperText Transfer Protocol (HTTP)

• Request-response protocol

• Reliance on a global namespace

• Resource metadata

• Stateless

• ASCII format

% telnet www.icir.org 80

GET /jdoe/ HTTP/1.0

<blank line, i.e., CRLF>

8

Steps in HTTP Request

• HTTP Client initiates TCP connection to server
–SYN

–SYNACK

–ACK

• Client sends HTTP request to server
–Can be piggybacked on TCP’s ACK

• HTTP Server responds to request

• Client receives the request, terminates connection

• TCP connection termination exchange

How many RTTs for a single request?
43

Round trips for an exchange

• TCP SYN

• TCP SYN-ACK

First RTT (To Get TCP Started)

• TCP ACK

• HTTP REQUEST

• HTTP RESPONSE

Second RTT (To Get HTTP Response)

• TCP FIN

• TCP FIN-ACK

• TCP ACK

Third (and a half) RTT (To Close Down TCP Connection)

Typically this third RTT doesn’t matter (because data is delivered)

44

45

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language: fr

(blank line)

Client-to-Server Communication

• HTTP Request Message

–Request line: method, resource, and protocol version

–Request headers: provide information or modify request

–Body: optional data (e.g., to “POST” data to the server)

request line

header

 lines

carriage return line feed

indicates end of message

Not optional

46

Client-to-Server Communication

• Request methods include:

–GET: Return current value of resource, run program, …

–HEAD: Return the meta-data associated with a resource

–POST: Update resource, provide input to a program, …

• Headers include:

–Useful info for the server

o e.g. desired language

47

Server-to-Client Communication

• HTTP Response Message

–Status line: protocol version, status code, status phrase

–Response headers: provide information

–Body: optional data

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 2006 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 2006 ...

Content-Length: 6821

Content-Type: text/html

(blank line)

data data data data data ...

status line
(protocol, status code,

status phrase)

header

 lines

data
e.g., requested HTML file 48

Server-to-Client Communication

• Response code classes

–Similar to other ASCII app. protocols like SMTP

Code Class Example

1xx Informational 100 Continue

2xx Success 200 OK

3xx Redirection 304 Not Modified

4xx Client error 404 Not Found

5xx Server error 503 Service Unavailable

9

49

Different Forms of Server Response

• Return a file
–URL matches a file (e.g., /www/index.html)

–Server returns file as the response

–Server generates appropriate response header

• Generate response dynamically
–URL triggers a program on the server

–Server runs program and sends output to client

• Return meta-data with no body

50

HTTP Resource Meta-Data

• Meta-data
– Info about a resource, stored as a separate entity

• Examples:
–Size of resource, last modification time, type of content

• Usage example: Conditional GET Request
–Client requests object “If-modified-since”

– If unchanged, “HTTP/1.1 304 Not Modified”

–No body in the server’s response, only a header

51

HTTP is Stateless

• Each request-response treated independently

–Servers not required to retain state

• Good: Improves scalability on the server-side

–Failure handling is easier

–Can handle higher rate of requests

–Order of requests doesn’t matter

• Bad: Some applications need persistent state

–Need to uniquely identify user or store temporary info

– e.g., Shopping cart, user profiles, usage tracking, … 52

State in a Stateless Protocol:

Cookies

• Client-side state maintenance
– Client stores small(?) state on behalf of server

– Client sends state in future requests to the server

• Can provide authentication

Request

Response

Set-Cookie: XYZ

Request

Cookie: XYZ

53

Performance Issues

54

HTTP Performance

• Most Web pages have multiple objects
– e.g., HTML file and a bunch of embedded images

• How do you retrieve those objects (naively)?
–One item at a time

10

55

Fetch HTTP Items: Stop & Wait

Client Server

Finish; display

page

Start fetching

page T
im

e

≥2 RTTs

per

object

56

Improving HTTP Performance:

Concurrent Requests & Responses

• Use multiple connections in
parallel

• Does not necessarily maintain
order of responses

• Client =

• Server =

• Network = Why?

R1
R2 R3

T1

T2 T3

57

Improving HTTP Performance:

Pipelined Requests & Responses

• Batch requests and responses
– Reduce connection overhead

– Multiple requests sent in a single

batch

– Maintains order of responses

– Item 1 always arrives before item 2

• How is this different from

concurrent requests/responses?
– Single TCP connection

Client Server

Improving HTTP Performance:

Persistent Connections

• Enables multiple transfers per connection
–Maintain TCP connection across multiple requests

– Including transfers subsequent to current page

–Client or server can tear down connection

• Performance advantages:
–Avoid overhead of connection set-up and tear-down

–Allow TCP to learn more accurate RTT estimate

–Allow TCP congestion window to increase

– i.e., leverage previously discovered bandwidth

• Default in HTTP/1.1
58

Scorecard: Getting n Small Objects

Time dominated by latency

• One-at-a-time: ~2n RTT

• Persistent: ~ (n+1)RTT

• M concurrent: ~2[n/m] RTT

• Pipelined: ~2 RTT

• Pipelined/Persistent: ~2 RTT first time, RTT later

59

Scorecard: Getting n Large Objects

Time dominated by bandwidth

• One-at-a-time: ~ nF/B

• M concurrent: ~ [n/m] F/B
– assuming shared with large population of users

– and each TCP connection gets the same bandwidth

• Pipelined and/or persistent: ~ nF/B
–The only thing that helps is getting more bandwidth..

60

11

61

Improving HTTP Performance:

Caching

• Many clients transfer same information
–Generates redundant server and network load

–Clients experience unnecessary latency

Server

Clients

Backbone ISP

ISP-1 ISP-2

62

Improving HTTP Performance:

Caching: How

• Modifier to GET requests:
– If-modified-since – returns “not modified” if resource not

modified since specified time

• Response header:
– Expires – how long it’s safe to cache the resource

– No-cache – ignore all caches; always get resource
directly from server

63

Improving HTTP Performance:

Caching: Why

• Motive for placing content closer to client:
–User gets better response time

–Content providers get happier users
o Time is money, really!

–Network gets reduced load

• Why does caching work?
–Exploits locality of reference

• How well does caching work?
–Very well, up to a limit

–Large overlap in content

–But many unique requests

64

Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request

• Return resource only if it has changed at the server
– Save server resources!

• How?
– Client specifies “if-modified-since” time in request

– Server compares this against “last modified” time of desired
resource

– Server returns “304 Not Modified” if resource has not changed

– …. or a “200 OK” with the latest version otherwise

GET /~ee122/fa07/ HTTP/1.1

Host: inst.eecs.berkeley.edu

User-Agent: Mozilla/4.03

If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT

<CRLF>

Request from client to server:

65

Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server

 decrease server load

• Typically done by content providers

• Only works for static content

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

66

Improving HTTP Performance:

Caching with Forward Proxies

Cache documents close to clients

 reduce network traffic and decrease latency

• Typically done by ISPs or corporate LANs

Clients

Backbone ISP

ISP-1 ISP-2

Server

Reverse proxies

Forward proxies

12

67

Improving HTTP Performance:

Caching w/ Content Distribution Networks

• Integrate forward and reverse caching functionality
–One overlay network (usually) administered by one entity

– e.g., Akamai

• Provide document caching
–Pull: Direct result of clients’ requests

–Push: Expectation of high access rate

• Also do some processing
–Handle dynamic web pages

–Transcoding

68

Improving HTTP Performance:

Caching with CDNs (cont.)

Clients

ISP-1

Server

Forward proxies

Backbone ISP

ISP-2

CDN

69

Improving HTTP Performance:

CDN Example – Akamai

• Akamai creates new domain names for each client

content provider.
– e.g., a128.g.akamai.net

• The CDN’s DNS servers are authoritative for the

new domains

• The client content provider modifies its content so

that embedded URLs reference the new domains.
– “Akamaize” content

– e.g.: http://www.cnn.com/image-of-the-day.gif becomes
http://a128.g.akamai.net/image-of-the-day.gif

• Requests now sent to CDN’s infrastructure…
70

Hosting: Multiple Sites Per Machine

• Multiple Web sites on a single machine
–Hosting company runs the Web server on behalf of

multiple sites (e.g., www.foo.com and www.bar.com)

• Problem: GET /index.html
– www.foo.com/index.html or www.bar.com/index.html?

• Solutions:
–Multiple server processes on the same machine

o Have a separate IP address (or port) for each server

– Include site name in HTTP request
o Single Web server process with a single IP address

o Client includes “Host” header (e.g., Host: www.foo.com)

o Required header with HTTP/1.1

71

Hosting: Multiple Machines Per Site

• Replicate popular Web site across many machines
–Helps to handle the load

–Places content closer to clients

• Helps when content isn’t cacheable

• Problem: Want to direct client to particular replica
–Balance load across server replicas

–Pair clients with nearby servers

72

Multi-Hosting at Single Location

• Single IP address, multiple machines
–Run multiple machines behind a single IP address

–Ensure all packets from a single

TCP connection go to the same replica

Load Balancer

 64.236.16.20

13

73

Multi-Hosting at Several Locations

• Multiple addresses, multiple machines
–Same name but different addresses for all of the replicas

–Configure DNS server to return different addresses

Internet

 64.236.16.20

 173.72.54.131

12.1.1.1

