Midterm Review

EE122 Fall 2012

Scott Shenker
http://inst.eecs.berkeley.edu/~eel22/

Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley

Midterm Logistics

 Test Is In this classroom starting at 5:40 exactly.
Tests will be handed out before then.
e Closed book, closed notes, etc.

* Single two-sided “cheat sheet”, 8pt minimum

 No calculators, electronic devices, etc.
—If | see them, you’ll be penalized

— Test requires exactly one division, which you can do in
your head (if not, ask us)

The test is long....(~20 pages)

* But most of the early questions are simple
— Just to see if you've been listening

* And nothing is very difficult or deep

* No one will get a perfect score

-

Today

* Available after class

e | hate these review lectures....

* And I'm missing the A’s game.

Midterm Review

My General Philosophy on Tests

« | am not a sadist (although my kids disagree)
* | am not a masochist (except in some areas)

 For those of you who only read the slides at home:

—If you don’t attend lectures, then it is your own damn fault
if you missed something....

* | believe In testing your understanding of the
basics, not tripping you up on tiny details or
making you calculate pi to 15 decimal places

General Guidelines

* Know the basics well, don’t focus on tiny details
— Study lecture notes and problem sets

* Read text only for general context and to nail down
certain detalls

—like DNS resource records, header fields, etc.
— Wikipedia is fine too

» Just because | didn’t cover it in review doesn’t
mean you don’t need to know it!
—But if | covered it today, you should know it.

Things You Don’t Need to Know

* The exact layout of packet headers
— Know what the fields do, not where they are located

 Detalls of HTTP, CDNSs, caching
—Those are for the final

« Mathematics of M/M/1 queues

Homework #2

Scores are high except on....

* Routing validity:
—Nodes don’t need consistent state to be valid
— Least cost paths are sufficient, but not necessary

 Reliability correctness:

— A design where packets are resent forever is inefficient,
but still reliable

* Routing: see solution sheet

10

One Positive Aspect of Reviews

Can focus on “putting it all together”

11

Putting It All Together

Headers

12

-

Packet Headers

* What does a packet on the wire look like?

* |In what order to the headers occur?

5

What headers are present?

» Consider the case of a DNS request from a laptop
connected to an ethernet

* Which headers are present in the packet as it hits
the wires?

 Take a few minutes to discuss this...

14

Headers from outermost inwards
« Data-link (e.g., Ethernet, ATM, etc.)

o |P
* Transport (e.g., UDP, TCP)

* Application (e.g., DNS, DHCP, HTTP, etc.)
— Not strictly a “header”, but close enough

15

-

Layer Encapsulation .G.

User A User B

Application

Transport

L

H

Network -
Ol |

Data Link

Common case: 20 bytes TCP header + 20 bytes IP header
+ 14 bytes Ethernet header = 54 bytes overhead

)

Putting It All Together

Accessing a web page

17

-

Opening laptop, making Web request

\

* What steps are involved?

s

-

What messages do you need?

« Take five minutes to figure this out

* I'll take some volunteers to give their answer

 If no one volunteers, then | won't cover this....

)

-

At a high level....

 Getting an address for your laptop
» Getting the address of the server
« Contacting the server

« Fetching the data

 Shutting connection down

2

-

What protocols are used?

« Getting an address for your laptop
—DHCP

» Getting the address of the server
—DNS

« Contacting the server
~TCP

* Fetching the data
—HTTP

Y

Working our way through answer...

 DHCP:
— Laptop: discovery
— DHCP server: offer
— Laptop: request (accepting offer)
— DHCP server: ACK

 Which of these are broadcast?

22

-

Continuing

* DNS:
— Laptop: request to local DNS server
— (magic happens, discussed on next slide)
— DNS server: response

)

-

How Does Resolution Happen?

root DNS server
Host at cis.poly.edu

wants IP address for ,

galia.cs.umass.edu 3
TLD DNS server

local DNS server
dns.poly.edu

authoritative DNS server
dns.cs.umass.edu

requesting host
cis.poly.edu @ gaia.cs.umass.edu
24

"

DNS Resource Records

NS: distributed DB storing resource records (RR)

RR format: (name, value, type, ttl)

* Type=A « Type=CNAME
— name IS hostname — name IS alias name for some
— value is IP address “canonical” name

E.g., www.cs.mit.edu IS really

 Type=NS _
eecsweb.mit.edu

— name is domain (e.g. foo.com)

— wvalue is hostname of authoritative name — wvalue iS canonical name
server for this domain

o Type:PTR o Type:MX
— name IS reversed IP quads _ _
o E.g.78.56.34.12.in-addr.arpa — value is name of mailserver
— wvalue is corresponding associated with name
hostname

— Also includes a weight/preference
25

Continuing

* TCP:
— Laptop: SYN
—Server: SYN-ACK
— Laptop: ACK

« HTTP: (assume single packet for each)
— Laptop: HTTP request

—Server: HTTP response (ACK piggybacked)
— Laptop: TCP ACK to server resp. (missing in 2011MT)

* TCP:
— Laptop: FIN
— Server: FIN-ACK
— Laptop: ACK

26

How Did We Get to the Internet
Design?

27

-

First Step: Basic Decisions

« Packet Switching winner over circuit switching

* Best-effort service model

J

-

Second Step: Architectural Principles

\

 Layering

* End-to-End Principle

« Fate-Sharing

J

These principles drove the design...

* How to break system into modules
—Dictated by Layering

* Where modules are implemented
—Dictated by End-to-End Principle

 Where state Is stored
—Dictated by Fate-Sharing

30

Who Does What?

 Five layers
— Lower three layers implemented everywhere
— Top two layers implemented only at hosts

APPLICALIQN [| Application

LT ET o Lo Y R e —————— » Transport
Network e ol Network e » Network
Datalink e > Datalink feees > Datalink
Physical fe- | Physical [« » Physical

What about switches?

31

Third Step: Design Challenges

» Consider each of the layers:
— Physical
— Datalink
— Network
— Transport
— Application

« What function does each layer need to implement?

* And which of them are both general and hard?

32

-

Two Layers We Don’t Worry About

* Physical: Technology-dependent

» Application: Application-dependent

%)

Datalink and Network Layers

« Both support best-effort delivery
— Datalink over local scope: MAC addresses
— Network over global scope: IP addresses

« Key challenge: scalable, robust routing
—How to direct packets to destination

34

-

Transport Layer

* Provide reliable delivery over unreliable network

)

-

~N
We Only Have Two Design Challenges

* Routing:

* Reliable delivery:

)

Routing and Reliability

 Reliable Transport:

A transport mechanism is ‘reliable” if and only if it
resends all dropped or corrupted packets

* Routing:
Global routing state is valid if and only if there are
no dead ends (easy) and there are no loops (hard)

37

-

Missing Pieces

« Sharing addresses: NAT

", DHCP

* Forwarding based on addresses: LPM

 Translating names to ac

dresses: DNS

®)

Some General Themes

39

General Rules of System Design

« System not scalable?
— Add hierarchy
—DNS, IP addressing

« System not flexible?
— Add layer of indirection
— DNS names (rather than using IP addresses as names)

« System not performing well?
— Add caches
—Web and DNS caching

40

-

The Paradox of Internet Traffic

* The majority of flows are short
— A few packets

* The majority of bytes are in long flows
—MB or more

* And this trend is accelerating...

)

A Common Pattern.....

* Distributions of various metrics (file lengths,
access patterns, etc.) often have two properties:
— Large fraction of total metric in the top 10%

— Sizable fraction (~10%) of total fraction in low values

* Not an exponential distribution
— Large fraction is in top 10%
— But low values have very little of overall total

* Lesson: have to pay attention to both ends of dist.

42

Little’s Law (1961)
L=AXW

L Is average number of packets in queue

* A Is average arrival rate

* W Is average waiting time for each packet

* Why do you care?
— Easy to compute L, harder to compute W

43

Routing

44

How Can You Avoid Loops?

 Restrict topology to spanning tree
— If the topology has no loops, packets can’t loop!

« Computation over entire graph
— Can make sure no loops
— Link-State

* Minimizing metric in distributed computation
— Loops are never the solution to a minimization problem
— Distance vector

* Won't review LS/DV, but will review learning switch

45

Easiest Way to Avoid Loops

« Use a topology where loops are impossible!
« Take arbitrary topology

 Build spanning tree (algorithm covered later)
—Ignore all other links (as before)

* Only one path to destinations on spanning trees

» Use “learning switches” to discover these paths
—No need to compute routes, just observe them

46

-
A Spanning Tree

Y

Clarification

« General comments in lecture were about learning
applied to case where switches were never the
destination

* The examples given referred only to switches
because it made the graphs simpler, but it did
raise the possibility that floods didn’t reach
everywhere

* My apologies for the confusion

48

-

Self-Learning Switch

When a packet arrives

* Inspect source ID, associate with incoming port
« Store mapping in the switch table

« Use time-to-live field to eventually forget mapping

Packet tells switch B
how to reach A.

A@—.q_
® o

)

Self Learning: Handling Misses

When packet arrives with unfamiliar destination
» Forward packet out all other ports

* Response will teach switch about that destination
% B
I'T >
A @—\1/—[@ C
®o

50

-

General Rule

When switch receives a packet:

Index the switch table using destination ID
If entry found for destination {

If dest on port from which packet arrived
then drop packet

else forward packet on port indicated

}

else flood

\ forward on all but the interface
onh which the frame arrived

Y

Core of Real Architecture

Addressing, Forwarding, TCP, DNS, Web

52

IP Packet Header

53

-

IP Packet Structure

4-bit
Header
Length

8-bit
Type of Service
(TOS)

4-bit
Version

16-bit Total Length (Bytes)

16-bit Identification

3-bit
Flags | 13-bit Fragment Offset

8-bit Time to

Live (TTL) 8-bit Protocol

16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

4 p
IPv4 and IPv6 Header Comparison

IPv4 IPV6

[

——

Field name kept from IPv4 to IPv6
Fields not kept in IPv6
Name & position changed in IPv6

New field in IPv6

-

Summary of Changes

 Eliminated fragmentation (why?)

* Eliminated header length (why?)

 Eliminated header checksum (why?)

* New options mechanism (next header) (why?)
« Expanded addresses (why?)

* Added Flow Label (why?)

)

Philosophy of Changes

* Don’t deal with problems: leave to ends
— Eliminated fragmentation
— Eliminated checksum

« Simplify handling:
—New options mechanism (uses next header approach)
— Eliminated header length

* Provide general flow label for packet
— Not tied to semantics
— Provides great flexibility

S7

- p
Comparison of Design Philosophy

IPv4 IPV6

Version Type of Service Total Length

Version Traffic Class Flow Label

Payload Length

Options Padding

To Destination and Back (expanded)
- Deal with Problems (greatly reduced)
— Read Correctly (reduced)

Special Handling (similar)

Addressing

59

-

Original Internet Addresses

* First eight bits: network address (/8)
 Last 24 bits: host address

Assumed 256 networks were more than enough!

)

-

Next Design: Classful Addressing

—Class A: if first byte in [0..127] = assume /8 (top bit = 0)

O******* *kkkkkkk k*kkkkkkk | kkkkkikhkk

o Very large blocks (e.g., MIT has 18.0.0.0/8)

— Class B: first byte in [128..191] = assume /16 (top bits = 10)

1 O****** *kkkkkkk k*kkkkkkk | kkkkkikhkk

o Large blocks (e.g,. UCB has 128.32.0.0/16)

—Class C: [192..223] = assume /24 (top bits = 110)

| 110*****‘ *kkkkkkk ‘ *kkkkkkk ‘ kkkkkkkk i

o Small blocks (e.g., ICIR has 192.150.187.0/24)

61

-
Classful Addressing (cont’ d)

—Class D: [224..239] (top bits 1110)

| 1110**** kkkkkkkk ‘ *kkkkkkk ‘ kkkkkkkk i

o Multicast groups

—Class E: [240..255] (top bits 1111)

1111 O*** *kkkkkkk *kkkkkkk | kkkkkkikk

o0 Reserved for future use

¢ What problems can classful addressing lead to?
—Only comes in 3 sizes

— Routers can end up knowing about many class C’s (/24s)
—Wasted address space

62

Today’s Addressing: CIDR

ol CIDR = Classless Interdomain Routing

. Flexible division between network and host
addresses

— Clarifies where boundary between addresses lies
— Classful addressing communicate this with first few bits
— CIDR requires explicit mask

63

CIDR Addressing

Use two 32-bit numbers to represent a network.
Network number = IP address + Mask

IP Address : 12.4.0.0 IP Mask: 255.254.0.0

Address | 00001100 | 00000100| 00000000|00000000

Mask | 11111111 | 11111110 | 00000000|00000000

k— Network Prefix =»|<—— for hosts —>|

\Written as 12.4.0.0/15 or 12.4/15\

64

Obtaining a Block of Addresses

* Allocation is also hierarchical
— Prefix: assigned (o an institution
— Addresses: assigned by the institution to their nodes

* Who assigns prefixes?

— Internet Corporation for Assigned Names and Numbers
o Allocates large address blocks to Regional Internet Registries

0)
— Regional Internet Registries (RIRS)
o E.g., (American Registry for Internet Numbers)

0 Allocates address blocks within their regions
o Allocated to Internet Service Providers and large institutions ($$)

— Internet Service Providers (ISPs)
0 Allocate address blocks to their customers (could be recursive)
« Often w/o charge

65

DHCP and NAT

66

-

Dynamic Host Configuration Protocol

P offel DHCP server
pRC —— o) 203.1.2.5

arriving
client \bfoa

)

Network Address Translation (NAT)

« Assign addresses to machines behind same NAT

—Usually in address block 192.168.0.0/16

« Use port numbers to multiplex single address

Server —
= NaT (5:6.7.81162.2.3.480[1001
8012000/ 5.6.7.81.2.3.4
— Internet i 192.2.3.4
5.6.7.8 — 180[1001]5.6.7.8[192.2.3.4
192.2.3.4:1001 > 1.2.3.4:2000 192.2.3.5

Clients gg

NAT (cont’ d)

« Assign addresses to machines behind same NAT
—Usually in address block 192.168.0.0/16

« Use port numbers to multiplex single address

Server
=N AT
802001]5,6.7.8]1.2.3.4 b -
—) Internet i 192.2.3.4
5.6.7.8 5.6.7.811.2.3.4]80[2001
g 80[1001 5.6.7.8\192.2.3.5
- 5.6.7.8]192.2.3.5/80{1001
192.2.3.4:1001 = 1.2.3.4:2000 192.2.3.5

192.2.3.5:1001 = 1.2.3.4:2001

Clients 69

Forwarding

70

-

Scalability via Address Aggregation

Provider is given 201.10.0.0/21 (201.10.0.x .. 201.10.7.x)

Each

customer
naller prefix

given sn

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Routers in the rest of the Internet just need to know
how to reach 201.10.0.0/21. The provider can direct the
IP packets to the appropriate customer.

"

-

Global Picture

201.10.0/21=>Port 1
201.11.0/21=>Port 2
202/8 = Port 4

>/

\
\
\
\
\
\
\
\
\
\
\
\
\
N
\
\
\
\
\
\
\
\
\
\
\

Only /21 listed in core

201.10.0/22=>Port 1

| 201.10.4/24>Port 2

201.10.5/24=>Port 3
201.10.6/23=>Port 4

Router in ISP

122, /23, /124 only listed in ISP’s router

J

-

Aggregation Not Always Possible

201.10.0.0/21

- o> o

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Multi-nomed customer with 201.10.6.0/23 has two

providers. Other parts of the Internet need to know how

to reach these destinations through both providers.
= /23 route must be globally visible

%

-

Multihoming Global Picture

> 201.10.6/23=>Port 1
201.11.0/21=>Port 2
201.12.0/21=>Port 3
201.13.0/21=>Port 4

201.10.0/21Port1 | N
201.10.6/23>Port 2 (<7
201.11.0/21=»Port3 |

Router in ISP2

y 201.10.0/22=>Port 1

201.10.4/24=>»Port 2
201.10.5/24=>»Port 3
201.10.6/23=>Port 4

Router in ISP1

"

-

Simple Example

« 0**=» Portl

« 100 = Port2
- 101 = Portl
¢ 11* = Portl

)

-

Prefix Tree

76

4 p
More Compact Representation

If you ever |leave path, you
are done, last matched
prefix is answer

P1

Record port associated with first match,
and only over-ride when it matches
another prefix during walk down tree

This Is longest prefix
match (LPM)

77

-

Longest Prefix Match Representation

~N

o Yk P Port 1
e 100 -> Port 2

* If address matches both, then take longest match

)

Transport

79

Role of Transport Layer

* Provide common end-to-end services for app layer
—Deal with network on behalf of applications
— Deal with applications on behalf of networks

« Could have been built into apps, but want common
Implementations to make app development easier

— Since TCP runs on end host, this is about software
modularity, not overall network architecture

80

-

TCP Header

Source port

Destination port

Sequence number

Acknowledgment

HdrLen| o | Flags | Advertised window

Checksum

Urgent pointer

Options (variable)

Data

Y

Example

» Packet arrives:
—Seq: 2323
— Ack: 4001
—W=3000
— [no payload]

« Appropriate response?
—Seq: 4001, payload: 4001-8000
—Seq: 2001, payload: 2001-5000
—Seq: 4001, payload: 4001-5000
—Seq: 5001, payload: 5001-6000
—Seq: 8001, payload: 8001-9000

82

-

Advertised Window Limits Rate

« Sender can send no faster than W/RTT bytes/sec

* In ideal case, throughput = MIN [W/RTT, B]
—Where B is bottleneck on path

)

Good Luck on Thursday!

84

