
1

1

Advanced Topics in Routing

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Announcements

2

Holy Trinity of Routing: LS, DV, PV

• Normally presented as the complete story

• But we know how to do much better

• That is what we will talk about today…..

3

Major Routing Challenges:

• Policy Oscillations

• Resilience

• Traffic Engineering

4

Another Purpose for Today

• EE122 (CS version) is algorithmically vacuous
–AIMD is the high point of intellectual depth (ugh)

• The algorithms described today are nontrivial
–Algorithms simple, but their properties are nonobvious

• You will prove two results as a class exercise
– 5 minutes, in groups, try to come up with reasoning

– I’ll help shape it into a proof

5

Policy Dispute Resolution

2

Policy Oscillations

• Last time we discussed how BGP might never

converge due to “policy oscillations”

• We now discuss how we might solve this problem

7 8

Policy Oscillations (cont’d)

• Policy autonomy vs network stability
–Oscillations possible with small degree of autonomy

– Focus of much recent research

• Not an easy problem
–PSPACE-complete to decide whether given policies will

eventually converge!

• However, if policies follow normal business

practices, stability is guaranteed
– “Gao-Rexford conditions”

–Essentially the provider/peer/customer policy categories

Theoretical Results (in more detail)

• If preferences obey Gao-Rexford, BGP is safe
–Safe = guaranteed to converge

• If there is no “dispute wheel”, BGP is safe
–But converse is not true

• If there are two “stable states”, BGP is unsafe
–But converse is not true

• If domains can’t lie about routes, and there is no

dispute wheel, BGP is incentive compatible

9

Objectives for New Policy Approach

• Do not reveal any ISP policies

• Distributed, online dispute detection and resolution

• Pick “normal” path (according to policies) if no

oscillation exists
–Get something reasonable if oscillation would exist

• Account for transient oscillations, don’t

permanently blacklist routes

10

11

Example of Policy Oscillation

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

“1” prefers “1 3 0”

over “1 0” to reach “0”

12

Step-by-Step of Policy Oscillation

Initially: nodes 1, 2, 3 know only shortest path to

0

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

3

13

1 advertises its path 1 0 to 2

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

14

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

15

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

3 advertises its path 3 0 to 1

Step-by-Step of Policy Oscillation

16

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

17

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

1 withdraws its path 1 0 from 2

Step-by-Step of Policy Oscillation

18

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

4

19

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

advertise: 2 0

2 advertises its path 2 0 to 3

Step-by-Step of Policy Oscillation

20

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

21

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

3 withdraws its path 3 0 from 1

Step-by-Step of Policy Oscillation

22

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

23

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

1 advertises its path 1 0 to 2

Step-by-Step of Policy Oscillation

24

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

5

25

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

withdraw: 2 0

2 withdraws its path 2 0 from 3

Step-by-Step of Policy Oscillation

26

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

We are back to where we started!

Step-by-Step of Policy Oscillation

Nodes See Signs of Trouble

• Route choices oscillation
–Node 1:

o 1 0 , 1 3 0 , 1 0 , 1 3 0 , …..

–Node 2:
o 2 0 , 2 1 0 , 2 0 , 2 1 0 , …..

–Node 3:
o 3 0 , 3 2 0 , 3 0 , 3 2 0 , …..

• Choices alternate between more preferred and

less preferred routes

27

Basic Idea

• If node notices that it is constantly selectng routes

that are more / less preferred than previous route
–Node thinks it may be involved in oscillation

• Computes local “precedence” figure
–Higher precedence value for less preferred routes

– In example, 1 0 gets higher value than 1 3 0

• Route advertisements carry this precedence
– Two precedence values:

o Incoming (carried by packet)

o Local (determined by own past history)

28

Precedence Calculation

• Routes are first ranked by “incoming precedence”
–Pick most preferred route among those with lowest

incoming precedence value

• Outgoing precedence is sum of incoming and local

precedence

29

Use of Precedence Values

• Maintain history of routes encountered during oscillations

• In table below, prefer P0 to P1 to P2

• Pick path P2, mark with precedence 1

30

6

31

Example of Policy Oscillation

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

32

1 advertises its path 1 0 to 2

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

33

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

34

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

3 advertises its path 3 0 to 1

Step-by-Step of Policy Oscillation

35

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

36

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

1 withdraws its path 1 0 from 2

Step-by-Step of Policy Oscillation

7

37

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

Step-by-Step of Policy Oscillation

Routes stabilize at this point
3 cannot choose 2 0 route from 2, because of higher precedence value

38

1

2 3

1 3 0

 1 0

3 2 0

 3 0

2 1 0

 2 0

0

advertise: 2 0
Precedence 1

2 advertises its path 2 0 to 3

Step-by-Step of Policy Oscillation

“Proof” of why it works

• Assume that policy oscillation exists within scheme

• Some router A must prefer a path offered by a

router B that does not prefer that path
– If everyone is getting first choice, no oscillation!

–So A’s first choice is B’s second choice for some A,B

• But router A cannot choose that path because it

will have a lower precedence

39

Properties of Solution

• If no policy oscillation exists, get usual routes

• If policy oscillation would have existed, approach

short-circuits oscillation

• If, after convergence, non-zero global precedence

values exist,  dispute(s) exist

• Only precedence values advertised, no other

routes or policies revealed

• Why isn’t this deployed?

40

Routing Resilience

Resilience

• Basic routing algorithms rely on timely consistency

or global convergence to achieve ensure delivery
– LS: routers need to have same picture of network

–DV: if algorithm hasn’t converged, might loop

• As nets grow, this gets harder and takes longer
–Need both consistency/convergence and timeliness!

• Creates lag between failure detection and recovery
– Lag is biggest barrier to achieving 99.999% reliability

42

8

Hacks Used Today

• Preconfigured backup paths
–When link fails, router has a backup route to use

–Very helpful against single failures

–Only limited protection against multiple failures

–No systematic paradigm

• ECMP: Equal-Cost Multipath
–Similar to backups, but narrower applicability

–Choose among several “shortest-paths”

43

Solutions Presented Today

• Multipath (one slide)

• Failure-carrying packets

• Routing-along-DAGs

44

Multipath Routing

• Multipath:
–Providing more than one path for each S-D pair

–Allow endpoints to choose among them
o This can be implemented by having a “path” field in packet

• Good: if one path goes down, can use another

• Bad: Delay while endpoints detect failure (RTT)

• Absolutely necessary because of E2E arguments
–But not a fundamental paradigm shift

• Part of solution, but still need more reliable routing

45

Fundamental Question

Can we completely eliminate the need to

“reconverge” after link failures?

i.e., can we tolerate failures without losses?

46

Failure-Carrying Packets

(FCP)

47

• Ensure all routers have consistent view of network
–But this view can be out-of-date

–Consistency is easy if timeliness not required

• Use reliable flooding
–Each map has sequence number

• Routers write this number in packet headers, so
packets are routing according to the same “map”
–Routers can decrement this counter, not increment it

–Eventually all routers use the same graph to route
packet

• This achieves consistency, but not timeliness….

FCP Approach: Step 1

48

9

FCP Approach: Step 2

• Carry failure information in the packets!
–Use this information to “fix” the local maps

• When a packet arrives and the next-hop link for

the path computed with the consistent state is

down, insert failure information into packet header
– Then compute new paths assuming that link is down

• If failure persists, it will be included in next

consistent picture of network
– Then not needed in packet header

49

Example: FCP routing

B D

C E

A F IP packet

source destination

50

F

Example: FCP routing

B D

C E

A
source destination

IP packet

(C,E) IP packet

(D,F) (C,E) IP packet

51

Class Exercise: Prove This Works

• Develop line of argument about why this

guarantees connectivity

• Under what circumstances does guarantee hold?

52

Keys to Proof

• Deadend: as long as map plus failures has

connectivity, no dead ends

• Loops: Assume loop. The nodes on the loop all

share the same “consistent” map plus a set of

failures in the packet header. Therefore, they

compute the same path. Contradiction.

53

Condition for Correctness

• Consider a set of changes to network from the last

consistent map before packet is sent until TTL of

packet would expire.

• If intersection of all network states during change

process is connected, then FCP will deliver packet

54

10

• Guarantees packet delivery
–As long as a path exists during failure process

• Major conceptual change
–Don’t rely solely on protocols to keep state consistent

– Information carried in packets ensures eventual

consistency of route computation

– This theme will recur in next design….

– Ion’s Stoica’s thesis!

Properties of FCP

55 56

Results: OSPF vs. FCP

• Unlike FCP, OSPF cannot simultaneously

provide low churn and high availability

0

50

100

150

200

250

300

350

400

0.01 1 100 10000
OSPF hello interarrival time [sec]

O
v
e

rh
e

a
d

 [

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

L
o

s
s
 r

a
te

O
v
e
rh

e
a
d

 [
m

s
g

s
/s

e
c
 p

e
r

li
n

k
]

 OSPF-overhead

 FCP-lossrate

 OSPF-lossrate

57

Results: Backup-paths vs. FCP

• Unlike FCP, Backup-paths cannot

simultaneously provide low state and lossrate

0

2000

4000

6000

8000

10000

12000

14000

1 10 100
Number of backup paths

S
ta

te
 [
e

n
tr

ie
s
 p

e
r

ro
u

te
r]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

L
o

s
s
 r

a
te

 Bkup-state

 FCP-state

 FCP-lossrate

 Bkup-lossrate

Problems with FCP

• Requires changes to packet header
–And packet headers could get long

• Requires fast recomputation of routes
–Can precompute common cases, but worst case is bad

• Does not address traffic engineering
–What is that?

58

Traffic Engineering (TE)

• Connectivity is necessary but not sufficient

• Need to also provide decent service

• Requires that links on the path not be overloaded
–Congestion control lowers drop rate, but need to provide

reasonable bandwidth to connections by spreading load

• TE is a way of distributing load on the network
– i.e., not all packets travel the “shortest path”

59

Routing Along DAGs

(RAD)

60

11

Avoiding Recomputation: Take II

• Recover from failures without global recomputation

• Support locally adaptive traffic engineering

• Without any change in packet headers, etc.

• Or requiring major on-the-fly route recomputation

61

Background

• Focus only on routing table for single destination
–Could be a prefix, or a single address

–Routing to each destination is independent, so this is fine

• Today we compute paths to particular destination
– From each source to this destination there is a path

• When path breaks, need to recompute path
– The source of all our troubles!

62

Move from path to DAG (Directed Acyclic Graph)
Routing compute paths from source to destination

If a link fails, all affected paths must be recomputed

Path

Our Approach: Shift the Paradigm

DAG

X

63

X

Packets can be sent on any of the DAG’s outgoing links

No need for global recomputation after each failure

DAG Properties

• Guaranteed loop-free

• Local decision for failure recovery

• Adaptive load balancing

X

X 0.7

0.3

64

Load Balancing

• Use local decisions:
–Choose which outgoing links to use

–Decide how to spead the load across these links

–Push back when all outgoing links are congested
o Send congestion signal on incoming links to upstream nodes

• Theorem:
–When all traffic goes to a single destination, local load

balancing leads to optimal throughput

• Simulations:
– In general settings, local load balancing close to optimal

65

DAG-based Routing

• Essentially a principled paradigm for backup paths
–Can tolerate many failures

–Scalable

–Easy to understand and manage

66

12

Computing DAG

• Use each link in a single direction

• DAG iff link directions follow global order

• Computing a DAG for destination v is simple:
–Essentially a shortest-path computation

–With consistent method of breaking ties

67

What about Connectivity?

• Multiple outgoing links improve connectivity
–But can RAD give “perfect” connectivity?

• If all outbound links fail that node is disconnected
–Even if underlying graph is still connected

• How can we fix this?

68

Link Reversal

• If all outgoing links fail, reverse incoming links to

outgoing

X

X
X
X

69

RAD Algorithm

• When packet arrives, send out any outgoing link

• When an outgoing link fails (or is reversed)
– If other outgoing links exist, do nothing

– If no other outgoing links exist, reverse all incoming links
o i.e., change them to outgoing

70

Link Reversal Properties

• Connectivity guaranteed!
– If graph is connected, link reversal process will restore

connectivity in DAG

• This has been known in wireless literature
–Now being applied to wired networks

• If you don’t think this is neat, then you are asleep.
– Local rule to produce ideal connectivity!

71

Class Exercise: Prove This Works

• Develop line of argument about why this

guarantees connectivity

72

13

Keys to Proof

• Deadend: algorithm never results in dead-ends
–At least one link will be outbound, if you have a link

• Loops:
–Assume network does not have loop at beginning

o (i.e., we have a DAG)

– Link reversal cannot create a loop
o Because reversed node cannot be part of a loop

– Therefore, topology never in a state where a loop exists

• Are we done with proof?

73

No, link reversals might not terminate

• Must prove topology reaches fixed point
– If underlying graph is connected

• Not reaching a fixed point means process of node

reversals continues forever

• Since network is of finite size, this process must

repeat in a cycle of node reversals

• How can we prove this is impossible?

74

Fact #1

• If a node has a path to the destination, then it will

never reverse itself.

• Conclusion: the set of nodes with a path to the

destination is nondecreasing

75

Fact #2

• For a node to do a second link reversal, all of its

neighbors must have also reversed its links.

• Therefore, the set of nodes doing a link reversal is

an expanding set

• Can only re-reverse all reversing nodes if the

process reaches the “edge” of network

• But once this process touches a node which is

connected to the source, it stops. QED.

76

Summary of RAD

• Local responses lead to:
–Guaranteed connectivity

–Close-to-optimal load balancing

• Can be used for L2 and/or L3
–No change in packet headers

77

Why Isn’t RAD Enough?

• The link reversals are on the “control plane”

• They take time to compute

• Packets can be lost in the meantime…

• Exactly the problem with FCP route recomputation
–Works on control-plane speeds, not data speeds

• Any suggestions?

78

14

Data-Driven Connectivity (DDC)

• Define link reversal properties in terms of actions

that can occur at data speeds

• Events: packet arriving in “reverse” direction

• Action: remove that link from outgoing set

• Goal: define simple algorithms that can be

supported in HW
–Ask Panda for more details

79

Review

• Major Routing Challenges:
–Resilience

– Traffic Engineering

–Policy Oscillations

• We have solutions for all of them!
– FCP, RAD, and Policy Dispute Resolution

• Are they deployed? No…..
–Will they be deployed? Maybe…..

• ..

80

