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Announcements

* No office hours on Thursday!




TCP Refresher

Same slides, but crucial for rest of lecture
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3-Way Handshaking
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Open Server
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Sequence Numbers
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Data and ACK In same packet

* The sequence number refers to data in packet
— Packet from A carrying data to B

* The ACK refers to received data in other direction
— A acking data that it received from B
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TCP Header
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TCP Segment

IP Data
TCP Data (segment) TcP Hdr || IP Hdr

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
—E.g., up to 1,500 bytes on an Ethernet

* TCP packet
—IP packet with a TCP header and data inside

— TCP header = 20 bytes long

« TCP segment
—No more than Maximum Segment Size (MSS) bytes

—E.qg., up to 1460 consecutive bytes from the stream
—MSS = MTU — (IP header) — (TCP header)
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Congestion Control Overview

Everything in this lecture is oversimplified.
Lots of details omitted.

But the basic points remain valid....
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Flow Control vs Congestion Control

* Flow control keeps one fast sender from
overwhelming a slow receiver

« Congestion control keeps a set of senders from
overloading the network
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Huge Literature on Problem

* |In Mid-80s Jacobson “saved” the Internet with CC

* One of very few net topics where theory helps;
many frustrated mathematicians in networking

 Less of a research focus now in the wide area
— But still actively researched in datacenter networks
—And commercial activity in wide area (e.g., Google)

e ...but still far from academically settled
— E.g. battle over “fairness”™ with Bob Briscoe...
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Congestion is Natural

 Because Internet traffic is bursty!

* If two packets arrive at the same time
—The node can only transmit one
— ... and either buffers or drops the other

* If many packets arrive in a short period of time
— The node cannot keep up with the arriving traffic
— ... delays, and the buffer may eventually overflow

—>
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Load and Delay

Typical queuing system with bursty arrivals

Average Average
Packet delay Packet loss

Load : Load

Must balance utilization versus delay and loss

J




-

Who Takes Care of Congestion?

 Network?

* End hosts?

 Both?
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Answer

* End hosts adjust sending rate

 Based on feedback from network

» Hosts probe network to test level of congestion
— Speed up when no congestion
— Slow down when congestion
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Drawbacks

« Suboptimal (always above or below optimal point)
* Relies on end system cooperation

* Messy dynamics
— All end systems adjusting at the same time
— Large, complicated dynamical system
— Miraculous it works at all!
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Basics of TCP Congestion Control

« Congestion window (CWND)
— Maximum # of unacknowledged bytes to have in flight
— Congestion-control equivalent of receiver window

— MaxWindow = min{congestion window, receiver window}
* Typically assume receiver window much bigger than cwnd

« Adapting the congestion window
—Increase upon lack of congestion: optimistic exploration
— Decrease upon detecting congestion
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Detecting Congestion

* Network could tell source (ICMP Source Quench)

— Risky, because during times of overload the signal itself
could be dropped (and add to congestion)!

« Packet delays go up (knee of load-delay curve)
— Tricky: noisy signal (delay often varies considerably)

» Packet loss
— Fail-safe signal that TCP already has to detect
— Complication: non-congestive loss (checksum errors)
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Not All Losses the Same

* Duplicate ACKs: isolated loss
— Still getting ACKs

* Timeout: possible disaster
— Not enough dupacks
— Must have suffered several losses
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How to Adjust CWND?

« Conseqguences of over-sized window much worse
than having an under-sized window
— Over-sized window: packets dropped and retransmitted
— Under-sized window: somewhat lower throughput

* Approach:
— Gentle increase when uncongested (exploration)
— Rapid decrease when congested
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AIMD

o Additive Increase

— On success of last window of data, increase by one MSS

* Multiplicative decrease
—On loss of packet, divide congestion window in half

J




-

| eads to the TCP “Sawtooth”
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Slow-Start

In what follows refer to cwnd In units of MSS
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AIMD Starts Too Slowly!

Need to start with a small CWND to avoid overloading the network.

Window

It could take a long
time to get started! |

%




“Slow Start” Phase

« Start with a small congestion window
—Initially, CWND is 1 MSS
—S0, Initial sending rate is MSS/RTT

* That could be pretty wasteful
—Might be much less than the actual bandwidth
—Linear increase takes a long time to accelerate

* Slow-start phase (actually “fast start”)
—Sender starts at a slow rate (hence the name)
—... but increases exponentially until first loss
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Slow Start in Action

Double CWND per round-trip time

Simple implementation:
on each ack, CWND += MSS

2 34 8
Spc O ENE ] i) > --...-:.,-

5 A D\D\ A/A/ D ya

0




-

Slow Start and the TCP Sawtooth

Window
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Exponential
“slow start”
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Why is it called slow-start? Because TCP originally had
ho congestion control mechanism. The source would just
start by sending a whole window's worth of data.
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This has been incredibly successful

* Leads to the theoretical puzzle:

If TCP congestion control is the answer,

then what was the question?

* Not about optimizing, but about robustness
—Hard to capture...
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Congestion Control Detalls
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Increasing CWND

* Increase by MSS for every successful window

* Increase a fraction of MSS per received ACK
« # packets (thus ACKs) per window: CWND / MSS
* Increment per ACK:

CWND += MSS / (CWND / MSS)

* Termed: Congestion Avoidance
—Very gentle increase
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Fast Retransmission

« Sender sees 3 dupACKs

« Multiplicative decrease: CWND halved
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CWND with Fast Retransmit
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Loss Detected by Timeout

 Sender starts a timer that runs for RTO seconds

 Restart timer whenever ack for new data arrives

* |f timer expires:
—Set SSTHRESH « CWND / 2 (“Slow-Start Threshold”)
—Set CWND « MSS
— Retransmit first lost packet
— Execute Slow Start until CWND > SSTHRESH
— After which switch to Additive Increase

35



Summary of Decrease

« Cut CWND half on loss detected by dupacks
—“fast retransmit”

« Cut CWND all the way to 1 MSS on timeout
— Set ssthresh to cwnd/2

* Never drop CWND below 1 MSS
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Summary of Increase

 “Slow-start”: increase cwnd by MSS for each ack

L eave slow-start regime when either:
—cwnd > SSThresh
— Packet drop

* Enter AIMD regime
—Increase by MSS for each window’s worth of acked data
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Repeating Slow Start After Timeout

Window
1 Fast meout  sgThresh
Retransmission Set to Here

Y,
Py e
—

__—"| Slow start in operation until
it reaches half of previous
CWND, ILe. SSTHRESH

Slow-start restart;: Go back to CWND of 1 MSS, but take

advantage of knowing the previous value of CWND. .



More Advanced Fast Restart

e Set ssthresh to cwnd/2

« Set cwnd to cwnd/2 + 3
—for the 3 dup acks already seen

 Increment cwnd by 1 MSS for each additional
duplicate ACK

* After receiving new ACK, reset cwnd to ssthresh
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Throughput Equation

In what follows refer to cwnd In units of MSS
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Calculation on Simple Model

« Assume loss occurs whenever cwnd reaches W
— Recovery by fast retransmit

 Window: W/2, W/2+1, W/2+2, ...W, W/2, ...
—W/2 RTTs, then drop, then repeat

* Average throughput: .75W(MSS/RTT)
— One packet dropped out of (W/2)*(3W/4)
— Packet drop rate p = (8/3) W2

* Throughput = (MSS/RTT) sqrt(3/2p)
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Some implications

* Flows get throughput inversely proportional to RTT
— Fairness issue?

* One can dispense with TCP and just match eqgtn:
— Equation-based congestion control
— Measure drop percentage p, and set rate accordingly
— Useful for streaming applications
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How does this work at high speed?
« Assume that RTT = 100ms, MSS=1500bytes

* What value of p is required to go 100Gbps?
—Roughly 2 x 1012

* How long between drops?
—Roughly 16.6 hours

« How much data has been sent in this time?
— Roughly 6 petabits

* These are not practical numbers!
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Adapting TCP to High Speed

* One approach: once speed Is past some
threshold, change equation to p-® rather than p=°

* We will discuss other approaches next time...
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Why AIMD?

In what follows refer to cwnd In units of MSS
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Three Congestion Control Challenges

» Single flow adjusting to bottleneck bandwidth
— Without any a priori knowledge
— Could be a Gbps link; could be a modem

» Single flow adjusting to variations in bandwidth
—When bandwidth decreases, must lower sending rate
—When bandwidth increases, must increase sending rate

* Multiple flows sharing the bandwidth
— Must avoid overloading network
— And share bandwidth “fairly” among the flows
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Problem #1: Single Flow, Fixed BW

« Want to get a first-order estimate of the available

bandwidth

— Assume bandwidth is fixed
— Ignore presence of other flows

* Want to start slow, but rapidly increase rate until
packet drop occurs (“slow-start”)

« Adjustment:
—cwnd initially set to 1 (MSS)
— cwnd++ upon receipt of ACK
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Problems with Slow-Start

 Slow-start can result in many losses
— Roughly the size of cwnd ~ BW*RTT

« Example:
— At some point, cwnd is enough to fill “pipe”
— After another RTT, cwnd is double its previous value
— All the excess packets are dropped!

* Need a more gentle adjustment algorithm once
have rough estimate of bandwidth
— Rest of design discussion focuses on this
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Problem #2: Single Flow, Varying BW

Want to track available bandwidth
e Oscillate around its current value

* If you never send more than your current rate, you
won’t know if more bandwidth is available

Possible variations: (in terms of change per RTT)

« Multiplicative increase or decrease:
cwndlJ cwnd */ a

 Additive increase or decrease:
cwndll cwnd +- b 19



Four alternatives

* AIAD: gentle increase, gentle decrease

« AIMD: gentle increase, drastic decrease

 MIAD: drastic increase, gentle decrease
—too many losses: eliminate

* MIMD: drastic increase and decrease
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Problem #3: Multiple Flows

« Want steady state to be “fair”

« Many notions of fairness, but here just require two
identical flows to end up with the same bandwidth

* This eliminates MIMD and AIAD
—As we shall see...

* AIMD is the only remaining solution!
— Not really, but close enough....
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Buffer and Window Dynamics
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AIMD Sharing Dynamics
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AIAD Sharing Dynamics
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Simple Model of Congestion Control

« Two TCP connections
— Rates x; and x,

« Congestion when sum>1

 Efficiency: sum near 1
 Fairness: x’ s converge

User 2: X,

2 user example

overload

Efficiency
line

underload

User 1: x4
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MIMD

Increase: x*b,

Decrease: x*b,

Does not
converge to
fairness

User 2: X,

/
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line

User 1: Xx;
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AIMD is only “fair” choice

* But how fair is it?
« Bandwidth depends on RTT

* Hosts that send more flows get more bandwidth
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Thursday: Advanced Topics in CC
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