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Announcements 

• No office hours on Thursday! 
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TCP Refresher 

Same slides, but crucial for rest of lecture 
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TCP Header 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Starting 

sequence 

number (byte 

offset) of data 

carried in this 

segment 

 

This is the 

number of the 

first byte of 

data in 

packet! 
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TCP Header 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Acknowledgment 

gives seq # just 

beyond highest 

seq. received in 

order. 

  “What’s Next” 
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3-Way Handshaking 

Client (initiator) 

Server 
Active 

Open 

Passive 

Open 

connect() 

listen() 

accept() 
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Sequence Numbers 

Host A 

Host B 

TCP Data 

TCP Data 

TCP  
HDR 

TCP  
HDR 

ISN (initial sequence number) 

Sequence 
number = 1st 

byte ACK sequence 
number = next 
expected byte 



Data and ACK in same packet 

• The sequence number refers to data in packet 
–Packet from A carrying data to B 

 

• The ACK refers to received data in other direction 
–A acking data that it received from B 
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TCP Header 

Source port Destination port 

Sequence number 

Acknowledgment 

Advertised window HdrLen Flags 0 

Checksum Urgent pointer 

Options (variable) 

Data 

Buffer space 

available for 

receiving data.  

Used for TCP’s 

sliding window. 

 

Interpreted as 

offset beyond 

Acknowledgment 

field’s value. 
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TCP Segment 

• IP packet 
–No bigger than Maximum Transmission Unit (MTU) 

–E.g., up to 1,500 bytes on an Ethernet 

• TCP packet 
– IP packet with a TCP header and data inside 

–TCP header  20 bytes long 

• TCP segment 
–No more than Maximum Segment Size (MSS) bytes 

–E.g., up to 1460 consecutive bytes from the stream 

–MSS = MTU – (IP header) – (TCP header) 

IP Hdr 
IP Data 

TCP Hdr TCP Data (segment) 
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Congestion Control Overview 

Everything in this lecture is oversimplified. 

Lots of details omitted. 

But the basic points remain valid…. 
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Flow Control vs Congestion Control 

• Flow control keeps one fast sender from 

overwhelming a slow receiver 

 

• Congestion control keeps a set of senders from 

overloading the network 

 

 



Huge Literature on Problem 

• In mid-80s Jacobson “saved” the Internet with CC 
 

• One of very few net topics where theory helps; 

many frustrated mathematicians in networking 
 

• Less of a research focus now in the wide area 
–But still actively researched in datacenter networks 

–And commercial activity in wide area (e.g., Google) 
 

• …but still far from academically settled 
–E.g. battle over “fairness” with Bob Briscoe… 

 
13 



• Because Internet traffic is bursty! 

• If two packets arrive at the same time 
–The node can only transmit one 

–… and either buffers or drops the other 

• If many packets arrive in a short period of time 
–The node cannot keep up with the arriving traffic 

–… delays, and the buffer may eventually overflow 
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Congestion is Natural 
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Load and Delay 

Average 
Packet delay 

Load 

Typical queuing system with bursty arrivals 

Must balance utilization versus delay and loss 

Average 
Packet loss 

Load 



Who Takes Care of Congestion? 

• Network? 
 

• End hosts? 
 

• Both? 
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Answer 

• End hosts adjust sending rate 
 

• Based on feedback from network 
 

• Hosts probe network to test level of congestion 
–Speed up when no congestion 

–Slow down when congestion 
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Drawbacks 

• Suboptimal (always above or below optimal point) 
 

• Relies on end system cooperation 
 

• Messy dynamics 
–All end systems adjusting at the same time 

– Large, complicated dynamical system 

–Miraculous it works at all! 
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Basics of TCP Congestion Control 

• Congestion window (CWND) 
–Maximum # of unacknowledged bytes to have in flight 

–Congestion-control equivalent of receiver window 

–MaxWindow = min{congestion window, receiver window} 
 Typically assume receiver window much bigger than cwnd 

 

• Adapting the congestion window 
– Increase upon lack of congestion: optimistic exploration 

–Decrease upon detecting congestion 
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Detecting Congestion 

• Network could tell source (ICMP Source Quench) 
–Risky, because during times of overload the signal itself 

could be dropped (and add to congestion)! 
 

• Packet delays go up (knee of load-delay curve) 
–Tricky: noisy signal (delay often varies considerably)  

 

• Packet loss 
–Fail-safe signal that TCP already has to detect 

–Complication: non-congestive loss (checksum errors) 



Not All Losses the Same 

• Duplicate ACKs: isolated loss 
–Still getting ACKs 

 

• Timeout: possible disaster 
–Not enough dupacks 

–Must have suffered several losses 
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How to Adjust CWND? 

• Consequences of over-sized window much worse 

than having an under-sized window 
–Over-sized window: packets dropped and retransmitted 

–Under-sized window: somewhat lower throughput 

 

• Approach: 
–Gentle increase when uncongested (exploration) 

–Rapid decrease when congested 

 
 



AIMD 

• Additive increase 
–On success of last window of data, increase by one MSS 

 

• Multiplicative decrease 
–On loss of packet, divide congestion window in half 
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Leads to the TCP “Sawtooth” 

t 

Window 

halved 

Loss 
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Slow-Start 

In what follows refer to cwnd in units of MSS 
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AIMD Starts Too Slowly! 

t 

Window 

It could take a long 
time to get started! 

Need to start with a small CWND to avoid overloading the network. 
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“Slow Start” Phase 

• Start with a small congestion window 

–Initially, CWND is 1 MSS 

–So, initial sending rate is MSS/RTT 

• That could be pretty wasteful 

–Might be much less than the actual bandwidth 

–Linear increase takes a long time to accelerate 

• Slow-start phase (actually “fast start”) 
–Sender starts at a slow rate (hence the name) 

–… but increases exponentially until first loss 
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Slow Start in Action 

Double CWND per round-trip time 
 

Simple implementation: 

 on each ack, CWND += MSS 

D A D D A A D D 

Src 

Dest 

D D 

1 2 4 3 

A A A A 
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Slow Start and the TCP Sawtooth 

Loss 

Exponential 
“slow start” 

t 

Window 

Why is it called slow-start? Because TCP originally had 
no congestion control mechanism. The source would just  

start by sending a whole window’s worth of data. 
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This has been incredibly successful 

• Leads to the theoretical puzzle: 

 

If TCP congestion control is the answer,  

then what was the question? 

 

• Not about optimizing, but about robustness 
–Hard to capture… 
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Congestion Control Details 
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Increasing CWND 

• Increase by MSS for every successful window 

 

• Increase a fraction of MSS per received ACK 

• # packets (thus ACKs) per window: CWND / MSS 

• Increment per ACK:  

CWND += MSS / (CWND / MSS) 

 

• Termed: Congestion Avoidance 
–Very gentle increase 
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Fast Retransmission 

• Sender sees 3 dupACKs 
 

• Multiplicative decrease: CWND halved 
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CWND with Fast Retransmit 

cwnd = 1 

cwnd = 2 

cwnd = 4 

cwnd = 3 

3 duplicate 

ACKs 

cwnd = 2 
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Loss Detected by Timeout 

• Sender starts a timer that runs for RTO seconds 

• Restart timer whenever ack for new data arrives 
 

• If timer expires: 
–Set SSTHRESH  CWND / 2 (“Slow-Start Threshold”) 

–Set CWND  MSS 

–Retransmit first lost packet 

–Execute Slow Start until CWND > SSTHRESH 

–After which switch to Additive Increase 
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Summary of Decrease 

• Cut CWND half on loss detected by dupacks 
– “fast retransmit” 

 

• Cut CWND all the way to 1 MSS on timeout 
–Set ssthresh to cwnd/2 

 

• Never drop CWND below 1 MSS 



Summary of Increase 

• “Slow-start”: increase cwnd by MSS for each ack 
 

• Leave slow-start regime when either: 
– cwnd > SSThresh 

–Packet drop 

 

• Enter AIMD regime 
– Increase by MSS for each window’s worth of acked data 
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Repeating Slow Start After Timeout 

t 

Window 

Slow-start restart: Go back to CWND of 1 MSS, but take 

advantage of knowing the previous value of CWND. 

Slow start in operation until 
it reaches half of previous 
CWND, I.e., SSTHRESH 

Timeout 
Fast 

Retransmission 

SSThresh 

Set to Here 



More Advanced Fast Restart 

• Set ssthresh to cwnd/2 
 

• Set cwnd to cwnd/2 + 3 
– for the 3 dup acks already seen 

 

• Increment cwnd by 1 MSS for each additional 

duplicate ACK 
 

• After receiving new ACK, reset cwnd to ssthresh 
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Throughput Equation 

In what follows refer to cwnd in units of MSS 



Calculation on Simple Model 

• Assume loss occurs whenever cwnd reaches W 
–Recovery by fast retransmit 

 

• Window: W/2, W/2+1, W/2+2, …W, W/2, … 
–W/2 RTTs, then drop, then repeat 

 

• Average throughput: .75W(MSS/RTT) 
–One packet dropped out of (W/2)*(3W/4) 

–Packet drop rate p =  (8/3) W-2  

 

• Throughput = (MSS/RTT) sqrt(3/2p)  
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Some implications 

• Flows get throughput inversely proportional to RTT 
–Fairness issue? 

 

• One can dispense with TCP and just match eqtn: 
–Equation-based congestion control 

–Measure drop percentage p, and set rate accordingly 

–Useful for streaming applications 
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How does this work at high speed? 

• Assume that RTT = 100ms, MSS=1500bytes 
 

• What value of p is required to go 100Gbps? 
–Roughly 2 x 10-12 

• How long between drops? 
–Roughly 16.6 hours 

• How much data has been sent in this time? 
–Roughly 6 petabits 

 

• These are not practical numbers! 
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Adapting TCP to High Speed 

• One approach: once speed is past some 

threshold, change equation to p-.8 rather than p-.5 

 

• We will discuss other approaches next time… 
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Why AIMD? 

In what follows refer to cwnd in units of MSS 



Three Congestion Control Challenges 

• Single flow adjusting to bottleneck bandwidth 
–Without any a priori knowledge 

–Could be a Gbps link; could be a modem 

 

• Single flow adjusting to variations in bandwidth 
–When bandwidth decreases, must lower sending rate 

–When bandwidth increases, must increase sending rate 

 

• Multiple flows sharing the bandwidth 
–Must avoid overloading network 

–And share bandwidth “fairly” among the flows 
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Problem #1: Single Flow, Fixed BW 

• Want to get a first-order estimate of the available 
bandwidth 
–Assume bandwidth is fixed 
– Ignore presence of other flows 

 

• Want to start slow, but rapidly increase rate until 
packet drop occurs (“slow-start”) 

 

• Adjustment:  
– cwnd initially set to 1 (MSS) 
– cwnd++ upon receipt of ACK  
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Problems with Slow-Start 

• Slow-start can result in many losses 
–Roughly the size of cwnd ~ BW*RTT 

 

• Example: 
–At some point, cwnd is enough to fill “pipe” 

–After another RTT, cwnd is double its previous value 

–All the excess packets are dropped! 

 

• Need a more gentle adjustment algorithm once 

have rough estimate of bandwidth 
–Rest of design discussion focuses on this 



Problem #2: Single Flow, Varying BW 

Want to track available bandwidth 

• Oscillate around its current value 

• If you never send more than your current rate, you 

won’t know if more bandwidth is available 

 

Possible variations: (in terms of change per RTT) 

• Multiplicative increase or decrease:  
cwnd  cwnd * / a  

• Additive increase or decrease:  
cwnd  cwnd +- b 
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Four alternatives 

• AIAD: gentle increase, gentle decrease 

 

• AIMD: gentle increase, drastic decrease 

 

• MIAD: drastic increase, gentle decrease 
– too many losses: eliminate 

 

• MIMD: drastic increase and decrease 
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Problem #3: Multiple Flows 

• Want steady state to be “fair” 
 

• Many notions of fairness, but here just require two 

identical flows to end up with the same bandwidth 

 

• This eliminates MIMD and AIAD 
–As we shall see… 

 

• AIMD is the only remaining solution! 
–Not really, but close enough…. 
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Buffer and Window Dynamics 

• No congestion  x increases by one packet/RTT every RTT 

• Congestion  decrease x by factor 2 

 

A B 
C = 50 pkts/RTT 

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

Backlog in router (pkts)

Congested if > 20

Rate (pkts/RTT)

x 



53 

AIMD Sharing Dynamics 

A B x1 

D E 
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AIAD Sharing Dynamics 

A B 
x1 

D E 
 No congestion  x increases by one packet/RTT every RTT 

 Congestion  decrease x by 1 
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Simple Model of Congestion Control 

• Two TCP connections 
– Rates x1 and x2 

 

• Congestion when sum>1 

 

• Efficiency: sum near 1 

• Fairness: x’s converge 

User 1: x1 
U

se
r 

2
: 

x
2

 

Efficiency 

line 

2 user example 

overload 

underload 
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Example 

User 1: x1 

U
se

r 
2
: 

x
2

 

fairness 

line 

efficiency 

line 

1 

1 

• Total  bandwidth 1 

Inefficient: 

x1+x2=0.7  

(0.2, 0.5) 

Congested: 

x1+x2=1.2  

(0.7, 0.5) 

Efficient: x1+x2=1 

Not fair  

(0.7, 0.3) 

Efficient: x1+x2=1 

Fair  

(0.5, 0.5) 
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AIAD 

User 1: x1 

U
se

r 
2
: 

x
2

 

fairness 

line 

efficiency 

line 

(x1h,x2h) 

(x1h-aD,x2h-aD) 

(x1h-aD+aI), 

x2h-aD+aI)) • Increase: x + aI 

• Decrease: x - aD 

• Does not 

converge to 

fairness 
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MIMD 

User 1: x1 

U
se

r 
2
: 

x
2

 

fairness 

line 

efficiency 

line 

(x1h,x2h) 

(bdx1h,bdx2h) 

(bIbDx1h, 

bIbDx2h) 

• Increase: x*bI 

• Decrease: x*bD 

• Does not 

converge to 

fairness 
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(bDx1h+aI, 

bDx2h+aI) 

AIMD 

User 1: x1 

U
se

r 
2
: 

x
2

 

fairness 

line 

efficiency 

line 

(x1h,x2h) 

(bDx1h,bDx2h) 

• Increase: x+aD 

• Decrease: x*bD 

• Converges to 

fairness 



AIMD is only “fair” choice 

• But how fair is it? 
 

• Bandwidth depends on RTT 
 

• Hosts that send more flows get more bandwidth 
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Thursday: Advanced Topics in CC 
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