Congestion Control

EE122 Fall 2012

Scott Shenker
http://inst.eecs.berkeley.edu/~eel22/

Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley

-
Announcements

* No office hours on Thursday!

TCP Refresher

Same slides, but crucial for rest of lecture

-

TCP Header

Starting
sequence
number (byte
offset) of data
carried in this
segment

This is the
number of the
first byte of
data in
packet!

Source port

Destination port

/

[—

Sequence number >

——]

/

Acknowledgment

HdrLen| o | Flags | Advertised window

Checksum

Urgent pointer

Options (variable)

Data

-

TCP Header

A
gl
o[
S€
o]

cknowledgment
ves seq # just
pyond highest

‘What s Next ”

(. received in =
der. \<

Source port

Destination port

Sequence number

[——

Acknowledgment >

—

_/

HdrLen| o | Flags | Advertised window

Checksum

Urgent pointer

Options (variable)

Data

-

3-Way Handshaking

Passive
Open
Active
Open Server

Client (initiator) listen()

connect() SYN

accept()

Sequence Numbers

Host A

ISN (initial sequence number)

y

Sequence
humber = 1st
byte

y

VVY A

TCP Data

TCP
HDR

Host B

ACK sequence
nhumber = next
expected byte

TCP Data

TCP ;
HDR

Data and ACK In same packet

* The sequence number refers to data in packet
— Packet from A carrying data to B

* The ACK refers to received data in other direction
— A acking data that it received from B

-

TCP Header

Buffer space

Interpreted as
offset beyond
Acknowledgment
field’ s value.

Source port

Destination port

Sequence number

_ Acknowledgment
available for — ——
receiving data’. HdrLen| 0 /Fakgs—v@vertlsed wmdoy
Used for TCP' s — —
sliding window. ecksum Urgent pointer

Options (variable)

Data

-

TCP Segment

IP Data
TCP Data (segment) TcP Hdr || IP Hdr

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
—E.g., up to 1,500 bytes on an Ethernet

* TCP packet
—IP packet with a TCP header and data inside

— TCP header = 20 bytes long

« TCP segment
—No more than Maximum Segment Size (MSS) bytes

—E.qg., up to 1460 consecutive bytes from the stream
—MSS = MTU — (IP header) — (TCP header)

0

Congestion Control Overview

Everything in this lecture is oversimplified.
Lots of details omitted.

But the basic points remain valid....

11

-

Flow Control vs Congestion Control

* Flow control keeps one fast sender from
overwhelming a slow receiver

« Congestion control keeps a set of senders from
overloading the network

2

Huge Literature on Problem

* |In Mid-80s Jacobson “saved” the Internet with CC

* One of very few net topics where theory helps;
many frustrated mathematicians in networking

 Less of a research focus now in the wide area
— But still actively researched in datacenter networks
—And commercial activity in wide area (e.g., Google)

e ...but still far from academically settled
— E.g. battle over “fairness”™ with Bob Briscoe...

13

Congestion is Natural

 Because Internet traffic is bursty!

* If two packets arrive at the same time
—The node can only transmit one
— ... and either buffers or drops the other

* If many packets arrive in a short period of time
— The node cannot keep up with the arriving traffic
— ... delays, and the buffer may eventually overflow

—>

h |

-

Load and Delay

Typical queuing system with bursty arrivals

Average Average
Packet delay Packet loss

Load : Load

Must balance utilization versus delay and loss

J

-

Who Takes Care of Congestion?

 Network?

* End hosts?

 Both?

)

-

Answer

* End hosts adjust sending rate

 Based on feedback from network

» Hosts probe network to test level of congestion
— Speed up when no congestion
— Slow down when congestion

)

Drawbacks

« Suboptimal (always above or below optimal point)
* Relies on end system cooperation

* Messy dynamics
— All end systems adjusting at the same time
— Large, complicated dynamical system
— Miraculous it works at all!

18

Basics of TCP Congestion Control

« Congestion window (CWND)
— Maximum # of unacknowledged bytes to have in flight
— Congestion-control equivalent of receiver window

— MaxWindow = min{congestion window, receiver window}
* Typically assume receiver window much bigger than cwnd

« Adapting the congestion window
—Increase upon lack of congestion: optimistic exploration
— Decrease upon detecting congestion

19

Detecting Congestion

* Network could tell source (ICMP Source Quench)

— Risky, because during times of overload the signal itself
could be dropped (and add to congestion)!

« Packet delays go up (knee of load-delay curve)
— Tricky: noisy signal (delay often varies considerably)

» Packet loss
— Fail-safe signal that TCP already has to detect
— Complication: non-congestive loss (checksum errors)

20

-

Not All Losses the Same

* Duplicate ACKs: isolated loss
— Still getting ACKs

* Timeout: possible disaster
— Not enough dupacks
— Must have suffered several losses

Y

How to Adjust CWND?

« Conseqguences of over-sized window much worse
than having an under-sized window
— Over-sized window: packets dropped and retransmitted
— Under-sized window: somewhat lower throughput

* Approach:
— Gentle increase when uncongested (exploration)
— Rapid decrease when congested

22

-

AIMD

o Additive Increase

— On success of last window of data, increase by one MSS

* Multiplicative decrease
—On loss of packet, divide congestion window in half

J

-

| eads to the TCP “Sawtooth”

Window

Loss

|

|

pas

4 e

t

*)

Slow-Start

In what follows refer to cwnd In units of MSS

25

-

AIMD Starts Too Slowly!

Need to start with a small CWND to avoid overloading the network.

Window

It could take a long
time to get started! |

%

“Slow Start” Phase

« Start with a small congestion window
—Initially, CWND is 1 MSS
—S0, Initial sending rate is MSS/RTT

* That could be pretty wasteful
—Might be much less than the actual bandwidth
—Linear increase takes a long time to accelerate

* Slow-start phase (actually “fast start”)
—Sender starts at a slow rate (hence the name)
—... but increases exponentially until first loss

27

-
Slow Start in Action

Double CWND per round-trip time

Simple implementation:
on each ack, CWND += MSS

2 34 8
Spc O ENE] i) > --...-:.,-

5 A D\D\ A/A/ D ya

0

-

Slow Start and the TCP Sawtooth

Window

Loss

N

///

\

Exponential
“slow start”

t

Why is it called slow-start? Because TCP originally had
ho congestion control mechanism. The source would just
start by sending a whole window's worth of data.

J

This has been incredibly successful

* Leads to the theoretical puzzle:

If TCP congestion control is the answer,

then what was the question?

* Not about optimizing, but about robustness
—Hard to capture...

30

Congestion Control Detalls

31

Increasing CWND

* Increase by MSS for every successful window

* Increase a fraction of MSS per received ACK
« # packets (thus ACKs) per window: CWND / MSS
* Increment per ACK:

CWND += MSS / (CWND / MSS)

* Termed: Congestion Avoidance
—Very gentle increase

32

-

Fast Retransmission

« Sender sees 3 dupACKs

« Multiplicative decrease: CWND halved

%)

-

CWND with Fast Retransmit

cwnd =1
cwnd = 2
cwnd =3
cwnd =4

3 duplicate {
ACKs

segment 1
ACK 2

segment 2

segment 3
ACK 4

segment 4

segment 5 —X

ACK 4

Y-SV,
ALUTIRTT

segment 6
ment7 ——
“ACKE ——1

segment 4

cwnd =2

iy

Loss Detected by Timeout

 Sender starts a timer that runs for RTO seconds

 Restart timer whenever ack for new data arrives

* |f timer expires:
—Set SSTHRESH « CWND / 2 (“Slow-Start Threshold”)
—Set CWND « MSS
— Retransmit first lost packet
— Execute Slow Start until CWND > SSTHRESH
— After which switch to Additive Increase

35

Summary of Decrease

« Cut CWND half on loss detected by dupacks
—“fast retransmit”

« Cut CWND all the way to 1 MSS on timeout
— Set ssthresh to cwnd/2

* Never drop CWND below 1 MSS

36

Summary of Increase

 “Slow-start”: increase cwnd by MSS for each ack

L eave slow-start regime when either:
—cwnd > SSThresh
— Packet drop

* Enter AIMD regime
—Increase by MSS for each window’s worth of acked data

37

Repeating Slow Start After Timeout

Window
1 Fast meout sgThresh
Retransmission Set to Here

Y,
Py e
—

__—"| Slow start in operation until
it reaches half of previous
CWND, ILe. SSTHRESH

Slow-start restart;: Go back to CWND of 1 MSS, but take

advantage of knowing the previous value of CWND. .

More Advanced Fast Restart

e Set ssthresh to cwnd/2

« Set cwnd to cwnd/2 + 3
—for the 3 dup acks already seen

 Increment cwnd by 1 MSS for each additional
duplicate ACK

* After receiving new ACK, reset cwnd to ssthresh

39

Throughput Equation

In what follows refer to cwnd In units of MSS

40

Calculation on Simple Model

« Assume loss occurs whenever cwnd reaches W
— Recovery by fast retransmit

 Window: W/2, W/2+1, W/2+2, ...W, W/2, ...
—W/2 RTTs, then drop, then repeat

* Average throughput: .75W(MSS/RTT)
— One packet dropped out of (W/2)*(3W/4)
— Packet drop rate p = (8/3) W2

* Throughput = (MSS/RTT) sqrt(3/2p)

41

Some implications

* Flows get throughput inversely proportional to RTT
— Fairness issue?

* One can dispense with TCP and just match eqgtn:
— Equation-based congestion control
— Measure drop percentage p, and set rate accordingly
— Useful for streaming applications

42

How does this work at high speed?
« Assume that RTT = 100ms, MSS=1500bytes

* What value of p is required to go 100Gbps?
—Roughly 2 x 1012

* How long between drops?
—Roughly 16.6 hours

« How much data has been sent in this time?
— Roughly 6 petabits

* These are not practical numbers!

43

Adapting TCP to High Speed

* One approach: once speed Is past some
threshold, change equation to p-® rather than p=°

* We will discuss other approaches next time...

44

Why AIMD?

In what follows refer to cwnd In units of MSS

45

Three Congestion Control Challenges

» Single flow adjusting to bottleneck bandwidth
— Without any a priori knowledge
— Could be a Gbps link; could be a modem

» Single flow adjusting to variations in bandwidth
—When bandwidth decreases, must lower sending rate
—When bandwidth increases, must increase sending rate

* Multiple flows sharing the bandwidth
— Must avoid overloading network
— And share bandwidth “fairly” among the flows

46

Problem #1: Single Flow, Fixed BW

« Want to get a first-order estimate of the available

bandwidth

— Assume bandwidth is fixed
— Ignore presence of other flows

* Want to start slow, but rapidly increase rate until
packet drop occurs (“slow-start”)

« Adjustment:
—cwnd initially set to 1 (MSS)
— cwnd++ upon receipt of ACK

47

Problems with Slow-Start

 Slow-start can result in many losses
— Roughly the size of cwnd ~ BW*RTT

« Example:
— At some point, cwnd is enough to fill “pipe”
— After another RTT, cwnd is double its previous value
— All the excess packets are dropped!

* Need a more gentle adjustment algorithm once
have rough estimate of bandwidth
— Rest of design discussion focuses on this

48

Problem #2: Single Flow, Varying BW

Want to track available bandwidth
e Oscillate around its current value

* If you never send more than your current rate, you
won’t know if more bandwidth is available

Possible variations: (in terms of change per RTT)

« Multiplicative increase or decrease:
cwndlJ cwnd */ a

 Additive increase or decrease:
cwndll cwnd +- b 19

Four alternatives

* AIAD: gentle increase, gentle decrease

« AIMD: gentle increase, drastic decrease

 MIAD: drastic increase, gentle decrease
—too many losses: eliminate

* MIMD: drastic increase and decrease

50

Problem #3: Multiple Flows

« Want steady state to be “fair”

« Many notions of fairness, but here just require two
identical flows to end up with the same bandwidth

* This eliminates MIMD and AIAD
—As we shall see...

* AIMD is the only remaining solution!
— Not really, but close enough....

o1

-

Buffer and Window Dynamics

A

X

1B

C = 50 pkts/RTT
 No congestion - x increases by one packet/RTT every RTT

« Congestion - decrease x by factor 2

60

50

40

30

20

10

Rate (pkts/RTT)

v

N

VYT

Backlog in router (pkts)
Congested if > 20

OOOOOOOOOOOOOOO
NNNNNNNNNNNNNNNNNN
HHHHHHHHHHHHHHH

52

-

AIMD Sharing Dynamics

A

B

— X —

D

e NoO congestion = rate increases by one packet/RTT every RTT
e Congestion - decrease rate by factor 2

60

50

40

30

20

10

0

Rates equalize = fair share

b
A AR AR

v

— 00 W
N 0

AN
(e}

109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

53

-

AIAD Sharing Dynamics

X1
DH— ———{E

e NO congestion = x increases by one packet/RTT every RTT
e Congestion - decrease x by 1

60

s0

30

20

low
0

82
109
136
163
190
217
244
271
298
325
352
379
406
433
460
487

54

Simple Model of Congestion Control

« Two TCP connections
— Rates x; and x,

« Congestion when sum>1

 Efficiency: sum near 1
 Fairness: x’ s converge

User 2: X,

2 user example

overload

Efficiency
line

underload

User 1: x4

55

4)
Example
1 “\ fairness
, Efficient: X;+x,=1 / line
[] . /
Total bandwidth 1 Fair .
Congested:
+x,=1.
) X, +X,=1.2
< 7 V
& 0.7, 0.5)
o 0.2, 0.5) 5.0.5)
5 / /
= /
Inefficient: /
X,+X,=0.7 d 0.7,0.3)
/
s | Efficient: x;+x,=1 efficiency
7 | Not fair line

User 1: Xx;

4 p
AIAD

fairness
(th'aD+al)’ /7 line
¢ Increase: x + g, Xon-8ptay)) /

¢+ Decrease: X - ap

¢+ Does not <
converge to o
fairness =

efficiency
line

User 1: Xx;

57

-

MIMD

Increase: x*b,

Decrease: x*b,

Does not
converge to
fairness

User 2: X,

/

fairness
line

efficiency

line

User 1: Xx;

58

4 N
AIMD

fairness
/7 line
¢ Increase: x+ap, (X Xan)

¢+ Decrease: X*by

t fonverges to
airness

User 2: X,

efficiency
line

User 1: Xx;

59

-

AIMD is only “fair” choice

* But how fair is it?
« Bandwidth depends on RTT

* Hosts that send more flows get more bandwidth

)

-

Thursday: Advanced Topics in CC

Y

