

Project 1

- Distribution of grades: - 50% perfect score of 240
 00% above 140
 - -90% above 140
- Giving people a second chance: – Fix your project, get it running
 - -We'll figure out the penalties later
- · Constraints:
 - Fix must cause multiple test cases to go from fail to pass
 - Regrades get maximum score of 200
 - Contact Anand/Colin for details.....

Midterm

- Average score 104 (out of 119)
- Standard deviation 11
- 50th percentile 107
- 90th percentile 115

Question-by-question....

- 1. True/False: about 10% got full credit Peak about 18 out of 20
- Multiple choice: about 8% got full credit Peak about 18 out of 20 IP checksum only looks at header UDP header does not include addresses
- 3. TCP Basics: about 50% got full credit
- 4. Seq. of Messages: about 80% got full credit
- 5. The Real World: about 90% got full credit

Question-by-question....

- 6. Timer values: about 50% got full credit
- 7. Addressing: about 70% got full credit
- 8. Learning switch: about 60% got full credit
- 9. DNS: about 70% got full credit
- 10. Sliding window: about 70% got full credit

Humorous answers....

- Who is the unsung hero?
 - "me"
 - "Al Gore" (surprisingly popular answer)
- What letter caused the first demo to fail?
 "love letter"
 - "S for shenker"
- In what year?
 - -"**1776**",
 - -"122 BCE"
 - "12000 BC (there was time travel involved)"

Suggested Bonus Questions...

- What is Scott Shenker's brother's profession?
- · How many citations does Shenker have?
- Draw a giraffe

The Bet....

- 8 people with a score of 119 on questions 1-10 – I geared the review to the test <u>way</u> too closely
 - But I felt like I had not sufficiently covered the "putting it all together" questions in lecture/sections
- 5 of the 119 scores got three bonus questions right - The fact you knew the answers to the bonus questions is a very bad sign....
- 0 of the 119 scores got four bonus questions

But in the spirit of fair play....

- · I won't collect on the bet
- I will donate my stake of \$220 to the EE122 review sessions refreshment fund
- I'm taking bets for the final....(10:1 odds again)
- I was accused (in writing) for "cheating" on the bet –I won't forget who you are......

11

– P. S. My TAs agree with you
– P. P. S. None of them will ever graduate

14

What Do We Know?

- How to route
 L2 (learning switches)
 L3 (DV, LS)
- · How to get an IP address (DHCP)
- · How to resolve names to IP addresses (DNS)

13

- · How to forward packets (LPM)
- How to deliver packet reliably (TCP)
- · How to access content (HTTP)

•

Missing Pieces (covered today)

- Basics of link-layer (L2) networks
 Will do details of ethernet later
- Using link-layer networks to reach destination -L2 involved at first/last hops (and in between)
- How do I find out about network problems?
 Loops, MTU limitations, etc.

Link-Layer Services

- Encoding
 - Representing the 0s and 1s
- Framing
 - Encapsulating packet into frame, adding header, trailer
 Using MAC addresses rather than IP addresses
- Error detection
 - Errors caused by signal attenuation, noise
 - Receiver detects presence, may ask for repeat
- Resolving contention

 Deciding who gets to transmit when multiple senders want to use a shared media
- · Flow control (pacing between sender & receiver)

MAC Address vs. IP Address

- MAC addresses (used in link-layer)
- Hard-coded in read-only memory when adapter is built
 Like a social security number
- Flat name space of 48 bits (e.g., 00-0E-9B-6E-49-76)
- Portable, and can stay the same as the host moves
- Used to get packet between interfaces on same network

• IP addresses

- Configured, or learned dynamically
- Like a postal mailing address
- Hierarchical name space of 32 bits (e.g., 12.178.66.9)
- Not portable, and depends on where the host is attached
- Used to get a packet to destination IP subnet

Broadcast at Link-Level
Use broadcast address: ff:ff:ff:ff:ff
If have return MAC address, use that in response
Unless want everyone to know result

27

Steps in reaching a Host

- · First look up IP address
- Also needs to know its own IP address
 DHCP

Sending a Packet

On same subnet:

Use MAC address of destination.
How do hosts know?

On some other subnet:

Use MAC address of first-hop router.
How do they know?

And how can a host tell whether destination is on same or other subnet?

Use the netmask
DHCP

R Sends Packet to B Router R's learns the MAC address of host B - ARP request: broadcast request for 222.222.222 - ARP response: B responds with 49-BD-D2-C7-56-2A Router R encapsulates the packet and sends to B 88-B2-2F-54-1A-0F 74-29-9C-E8-FF-55 host E6-E9-00-17-BB-48 222.222.222.221 1A-23-F9-CD-08-0 111.111.111 Α LAN LAN 2 ROUTER 222.222.222.222 222.222.222 host 111.111 111.111.111.110 49-BD-D2-C7-56-2A host R В CC-49-DE-D0-AB-7D

Security Analysis of ARP

Impersonation

- Any node that hears request can answer
 ... and can say whatever they want
- Actual legit receiver never sees a problem

 Because even though later packets carry its IP address, its NIC doesn't capture them since not its MAC address

Key Ideas in Both ARP and DHCP

- Broadcasting: Can use broadcast to make contact - Scalable because of limited size
- Caching: remember the past for a while
 Store the information you learn to reduce overhead
 Remember your own address & other host's addresses
- Soft state: eventually forget the past
 Associate a time-to-live field with the information
 ... and either refresh or discard the information
 Key for robustness in the face of unpredictable change

41

Why Not Use DNS-Like Tables?

· When host arrives:

Assign it an IP address that will last as long it is present
 Add an entry into a table in DNS-server that maps MAC to IP addresses (i.e., no need for ARP!)

Two Different Issues

Setting up the database:

- Names: explicit creation, tied to "static" addresses o DNS need only handle occasional updates
- Hosts: come and go without explicitly informing network o Must do MAC-IP mapping on demand
- But could leverage DHCP o DHCP knows when a host arrives o And DHCP messages already contain MAC addresses
- Using the MAC address:
 - So if I get MAC address when I look up address in DNS, how can I use that information?
 - The database must live in each router and host for it to save any time....but it does cut down on broadcasting

Network Control Messages (and how to use them for discovery)

45

What Errors Might A Router See? Dead-end: No route to destination

Sign of a loop: TTL expires

•

- Can't physically forward: packet too big – And has DF flag set
- · Can't keep up with traffic: buffer overflowing
- · Header corruption or ill-formed packets

No route to destination? – Host can't detect or fix routing failure.

Which should network tell host about?

- TTL expires? – Host can't detect or fix routing loop.
- This assumes we want to bind the meaning of packet drops to congestion
- Buffer overnoon ?: – Transport congestion control can detect/deal with this
- Header corruption or ill-formed packets? – Host can't fix corruption, but can fix formatting errors⁷

Internet Control Message Protocol

- Triggered when IP packet encounters a problem -E.g., Time Exceeded or Destination Unreachable
- ICMP packet sent back to the source IP address
 Includes the error information (e.g., type and code)
 IP header plus 8+ byte *excerpt* from original packet
- Source host receives the ICMP packet - Inspects *excerpt* (e.g., protocol/ports) to identify socket
- Exception: not sent if problem packet is ICMP – And just for fragment 0 of a group of fragments

Types of Control Messages

Need Fragmentation - IP packet too large for link layer, DF set TTL Expired - Decremented at each hop; generated if ⇒ 0 Unreachable - Subtypes: network / host / port o (who generates Port Unreachable?) Source Quench - Old-style signal asking sender to slow down Redirect - Tells source to use a different local router

Using ICMP

- ICMP intended to tell host about network problems
 Diagnosis
 - Won't say more about this....
- Can exploit ICMP to elicit network information
 Discovery
 - Will focus on this....

52

54

Discovering Network Path Properties

- PMTU Discovery: What is largest packet that go through the network w/o needing fragmentation?
 Most efficient size to use
 - (Plus fragmentation can amplify loss)

• Traceroute:

- -What is the series of routers that a packet traverses as it travels through the network?
- Ping:
 - Simple RTT measurements

Ping: Echo and Reply

- ICMP includes simple "echo" functionality
 Sending node sends an ICMP Echo Request message
 Receiving node sends an ICMP Echo Reply
- Ping tool
 - Tests connectivity with a remote host
 - -... by sending regularly spaced Echo Request
 - \ldots and measuring delay until receiving replies
- If you have never used ping, do it tonight!
 One of the few ways you actually "see" the network

Path MTU Discovery

- MTU = Maximum Transmission Unit – Largest IP packet that a <u>link</u> supports
- Path MTU (PMTU) = minimum end-to-end MTU
 -Must keep datagrams no larger to avoid fragmentation
- · How does the sender know the PMTU is?
- Strategy (RFC 1191): - Try a desired value
 - Set **DF** to prevent fragmentation
 - Upon receiving Need Fragmentation ICMP ...
 o ... oops, that didn't work, try a smaller value

55

Issues with Path MTU Discovery

- · What set of values should the sender try? - Usual strategy: work through "likely suspects"
 - -E.g., 4352 (FDDI), 1500 (Ethernet). 1480 (IP-in-IP over Ethernet), 296 (some modems)
- What if the PMTU changes? (how could it?) - Sender will immediately see *reductions* in PMTU (how?) - Sender can periodically try larger values
- What if Needs Fragmentation ICMP is lost? - Retransmission will elicit another one
- How can The Whole Thing Fail? - "PMTU Black Holes": routers that don't send the ICMP

Discovering Routing via Time Exceeded Host sends an IP packet - Each router decrements the time-to-live field • If TTL reaches 0 - Router sends Time Exceeded ICMP back to the source - Message identifies router sending it o Since ICMP is sent using IP, it's just the IP source address o And can use PTR record to find name of router 5.6.7.156 1237 host ... DNS ··· DNS host host host 9.10.11 Time exceeded router router router 57

30 hops n	nax, 40 byte pac	kets		

traceroute to www.whitehouse.gov (204.102.114.49), 30 hops max, 40 byte packets 1 cory115-1-gw.EECS.Berkeley.EDU (128.32.48.1) 0.829 ms 0.660 ms 0.565 ms

traceroute to www.whitehouse.gov (204.102.114.49), 30 hops max, 40 byte packets

1 cory115-1-gw.EECS.Berkeley.EDU (128.32.48.1) 0.829 ms 0.660 ms 0.565 ms

2 cory-cr-1-1-soda-cr-1-2.EECS.Berkeley.EDU (169.229.59.233) 0.953 ms 0.857 ms 0.727 ms

traceroute to www.whitehouse.gov (204.102.114.49),
30 hops max, 40 byte packets
1 cory115-1-gw.EECS.Berkeley.EDU (128.32.48.1)
0.829 ms 0.660 ms 0.565 ms
2 cory-cr-1-1-soda-cr-1-2.EECS.Berkeley.EDU (169.229.59.233)
0.953 ms 0.857 ms 0.727 ms
3 soda-cr-1-1-soda-br-6-2.EECS.Berkeley.EDU (169.229.59.225)
1.461 ms 1.260 ms 1.137 ms
4 g3-8.inr-202-reccev.Berkeley.EQU (128.32.255.169)
1.402 ms 1.298 ms * ()• Lost Reply
5 ge-1-3-0.inr-002-reccev.Berkeley.EDU (128.32.0.38)
1.428 ms 1.889 ms 1.378 ms
6 oak-dc2ucb-ge.cenic.net (137.164.23.29)
1.731 ms 1.643 ms 1.680 ms
7 dc-oak-dc1oak-dc2-p2p-2.cenic.net (137.164.22.194)
3,045 ms 1.640 ms 1.630 ms
8 (**) Router doesn't send ICMPs
9 dc-lax-uc1sac-dc1-pos.cenic.net (137.164.22.126)
13-104 ms 13.163 ms 12.988 ms No PTR record for address
10(137.164.22.21 (13).164.22.21) Final Hop
13.328 ms 42.981 ms 13.548 ms
11 dc-tus-dc1lax-dc2-pos.cenic.net (137-164.22.43)
18.775 ms 17.469 ms 21.652 ms
12a204-102-114-49.deploy.akamaitechnologies.com (204.102.11449)
18.137 ms 14.905 ms 19.730 ms