4 N\
Congestion Control
EE122 Fall 2012
Scott Shenker
http://inst.eecs.berkeley.edu/~ee122/
Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley
1

J

4 N\
A few words from Panda....

%)

4 N\

Caveat: In this lecture

» Sometimes CWND is in units of MSS’s
—Because | want to count CWND in small integers
—This is only for pedagogical purposes

* Sometimes CWND is in bytes
—Because we actually are keeping track of real windows
—This is how TCP code works

« Figure it out from context....

e N
Announcements
* Project 3 is out!
2
e N
Congestion Control Review

Did not have slides last time

Going to review key points
J
- N

Load and Delay

Typical queuing system with bursty arrivals

Average
Packet delay

Average
Packet loss

Load | Load |

Must balance utilization versus delay and loss

©)

p
Not All Losses the Same

* Duplicate ACKs: isolated loss
— Still getting ACKs

» Timeout: possible disaster
—Not enough dupacks
—Must have suffered several losses

P
Leads to the TCP “Sawtooth”

Window

Loss \

halved

Vs

AIMD Starts Too Slowly!

Need to start with a small CWND to avoid overloading the network.

Window

It could take a long

time to get started! t

(N\

AIMD

+ Additive increase
—On success of last window of data, increase by one MSS

* Multiplicative decrease
—On loss of packet, divide congestion window in half

¥
4 2\
Simple geometric analysis
cwnd Timeouts
Noax A
2
1 t
Packet drop rate, p =1/ 4, where 4 =anfax
Throughput, B=aw+=\/§ L RTT
e RTT RTTp
é 2 2 10/
e N\

“Slow-Start” Phase

« Start with a small congestion window
—Initially, CWND is 1 MSS
— So, initial sending rate is MSS/RTT

* But want to increase quickly
—Rather than just use additive increase....
—..we enter “slow-start” phase (actually “fast start”)

» Sender starts at a slow rate (hence the name)
—but increases exponentially until first loss

12

4 N\
Slow Start in Action

Double CWND per round-trip time

Simple implementation:
on each ack, CWND += MSS

Src
Dest
13
/
4 N\
. .
What is really looks like...
“Time evalulion of & single TCP flow through & reuter, Buffer is 21°C
300 - T T T T T T T T T -
250 L1 st /I i i
150 o 1
100 .
sl || Congestion Window [Pks] i
o L L L L L L Efmeteo AT 1
0 10 20 30 40 50 60 70 80 s 100
12F
YL
oa]
06 j ‘
04
02 | f Batlleneck Link Utilization
o H . H H .) ¢ A)
0 10 20 a0 40 50 60 70 80 0 100
! Buffer Occupancy [Pkis]
150 - g
=] —
N
\J ol e) H d i) d H i %)
T 10 20 30 40 50 60 70 80 %0 100
4 N\

Increasing CWND

* Increase by MSS for every successful window

* Increase a fraction of MSS per received ACK
« # packets (thus ACKs) per window: CWND / MSS
* Increment per ACK:

CWND += MSS / (CWND / MSS)

» Termed: Congestion Avoidance
—Very gentle increase

17

(N\
Slow Start and the TCP Sawtooth
Window
Loss \ \
Exponential t
“slow start”
Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just
start by sending a whole window's worth of data. 1
/
(N\
Congestion Control Details
16
J
4 2\

Fast Retransmission

» Sender sees 3 dupACKs

* Multiplicative decrease: CWND halved

)

(N\ (N\

CWND with Fast Retransmit Loss Detected by Timeout

» Sender starts a timer that runs for RTO seconds
cwnd =1 |—————Sseaments =~ = |
ACK 2

cwnd =2 —————seamentz |

cwnd =3

» Restart timer whenever ack for new data arrives

P EE—— * If timer expires:
cwnd=4 " scments —Set SSTHRESH «~ CWND / 2 (“Slow-Start Threshold”)
scament 5 —Set CWND « MSS
‘ e —Retransmit first lost papket
ACKs Fperi— seaments | —Execute Slow Start until CWND > SSTHRESH

cwnd =2

— After which switch to Additive Increase

19/ 20/

(" 2\ 4 2\
Summary of Decrease Summary of Increase

« Cut CWND half on loss detected by dupacks - “Slow-start”: increase cwnd by MSS for each ack
—“fast retransmit”

* Leave slow-start regime when either:

* Cut CWND all the way to 1 MSS on timeout —cwnd > SSThresh
— Set ssthresh to cwnd/2 —Packet drop
« Never drop CWND below 1 MSS * Enter AIMD regime

—Increase by MSS for each window’s worth of acked data

21/ 22/
4 N\ e N\
Repeating Slow Start After Timeout More Advanced Fast Restart
) * Set ssthresh to cwnd/2
Window)
Fast Timeout gSThresh
Retransmission Set to Here * Set cwnd to cwnd/2 + 3

—for the 3 dup acks already seen

* Increment cwnd by 1 MSS for each additional
duplicate ACK

Slow start in operation until
it reaches half of previous
CWND, Le., SSTHRESH

* After receiving new ACK, reset cwnd to ssthresh
Slow-start restart: Go back to CWND of 1 MSS, but take
advantage of knowing the previous value of CWND.

Vs

Example

» Consider a TCP connection with:
—MSS=10bytes
—ISN=100
—CWND=100 bytes

—Last ACK was for seq # 110
* i.e., receiver expecting next packet to have seq. no. 110

» Packets with seq. no. 110 to 200 are in flight
—What ACKs do they generate?
—And how does the sender respond?

25/

Vs

History (cont’d)

* ACK 110 (due to 190) cwnd=130 xmit 230
* ACK 110 (due to 200) cwnd=140 xmit 240

* ACK 210 (due to 110 rxmit) cwnd=ssthresh=50

xmit 250
* ACK 220 (due to 210) cwnd=60

27/

Vs

Four alternatives

» AIAD: gentle increase, gentle decrease

» AIMD: gentle increase, drastic decrease

» MIAD: drastic increase, gentle decrease
—too many losses: eliminate

* MIMD: drastic increase and decrease

e N
History
* ACK 110 (due to 120) cwnd=100 dup#1l
* ACK 110 (due to 130) cwnd=100 dup#2
+ ACK 110 (due to 140) cwnd=100 dup#3
* RXMT 110 ssthresh=50 cwnd=80
* ACK 110 (due to 150) cwnd=90
* ACK 110 (due to 160) cwnd=100
* ACK 110 (due to 170) cwnd=110 xmit 210
* ACK 110 (due to 180) cwnd=120 xmit 220
%)
e N
Why AIMD?
28
J
- N

AIMD Sharing Dynamics

29

X B
o
D E]

e No congestion > rate increases by one packet/RTT every RTT

e Congestion > decrease rate by factor 2

1

g 3

4 Rates equalize > fair share F

MM

FVYvvryvvvvvrvvvvrvyvivvvy

82
109
136
163
190
217
244
2n
298
325
352
379
406
433
460
487

Vs

AIAD Sharing Dynamics

=>-<= - B
X []
D E]

e No congestion - x increases by one packet/RTT every RTT
e Congestion > decrease x by 1

« FAMAAAAAMAAMAAN

» WWINWIANWIT

I Y R N A o @ 0

mmmmmmmmmmmmmmmmm
NNNNNNN A& B8589 FT 31

Vs

TCP fills up queues

Other Congestion Control Topics

» Means that delays are large for everyone

» And when you do fill up queues, many packets
have to be dropped (not really)

« Alternative: Random Early Drop (LBL)
— Drop packets on purpose before queue is full
— Set drop probability D as a function of queue size
—Keep queue average small, but tolerate bursts

4 2\
What if loss isn’t congestion-related?

33/

Vs

How does this work at high speed?

+ Can use Explicit Congestion Notification (ECN)
* Bit in IP packet header, that is carried up to TCP

* When RED router would drop, it sets bit instead
— Congestion semantics of bit exactly like that of drop

» Advantages:
—Don’t confuse corruption with congestion
—Don’t confuse recovery with rate adjustment

» Throughput = (MSS/RTT) sqrt(3/2p)
—Assume that RTT = 100ms, MSS=1500bytes

» What value of p is required to go 100Gbps?
—Roughly 2 x 1012

* How long between drops?
—Roughly 16.6 hours

* How much data has been sent in this time?
—Roughly 6 petabits

%)

4 2\

Adapting TCP to High Speed

* These are not practical numbers! 3

» One approach: once speed is past some
threshold, change equation to p-8 rather than p-°
—Let the additive constant in AIMD depend on CWND
— At very high speeds, increase CWND by more than MSS

» We will discuss other approaches next later...

36

4 N\
How “Fair” is TCP?

» Throughput depends inversely on RTT
« If open K TCP flows, get K times more bandwidth!

* What is fair, anyway?

(N\

What happens if hosts “cheat”?

37/

(" 2\
Router-Assisted Congestion Control

» Can get more bandwidth by being more
aggressive
—Source can set CWND =+ 2MSS upon success
—Gets much more bandwidth (see forthcoming HW4)

* Currently we require all congestion-control
protocols to be “TCP-Friendly”
—To use no more than TCP does in similar setting

* But Internet remains vulnerable to non-friendly

» There are two different tasks:
—Isolation/fairness
— Adjustment

« Isolation/fairness:
—We would like to make sure each flow gets its “fair
share”
—This protects flows from cheaters
* Safety/Security issue
—No longer requires everyone use same CC algorithm
* Innovation issue

implementations
—Need router support to deal with this... 38)

e N\
Isolation: Intuition

 Adjustment: %)

' N\
Max-Min Fairness

* Treat each “flow” separately
—For now, flows are packets between same Source/Dest.

* Each flow has its own FIFO queue in router

* Service flows in a round-robin fashion
—When line becomes free, take packet from next flow

» Assuming all flows are sending MTU packets, all
flows can get their fair share
—But what if not all are sending at full rate?

* Given set of bandwidth demands r; and total
bandwidth C, max-min bandwidth allocations are:

a; = min(f, r;)

« where f is the unique value such that Sum(a) = C

* This is what round-robin service gives
—if all packets are MTUs

* Property:
—If you don’t get full demand, no one gets more than you

—And some are sending at more than their share?)

4 2\
Example

41

-C=10; r,=8,1,=6,1,=2; N=3
-C/3=333 >

—Can service all of ry
—Remove r; from the accounting: C=C—-r;=8;,N=2

“Cl2=4-

—Can't service all of ry orr,
—So hold them to the remaining fair share: f = 4

f=4

10 4 | 'min@ 4)y=4
min(6, 4) =
2 2 min(2, 4) = 2

42

(N\

Fair Queuing (FQ)

» Implementation of round-robin generalized to case
where not all packets are MTUs

» Weighted fair queueing (WFQ) lets you assign
different flows different shares

* WFQ is implemented in almost all routers

—Variations in how implemented
* Packet scheduling (here)
« Just packet dropping (AFD)

)

(" 2\
FQ is really “processor sharing”

« Every current flow gets same service
» When flows end, other flows pick up extra service
* FQ realizes these rates through packet scheduling

» But we could just assign them directly

—This is the Rate-Control Protocol (RCP) [Stanford]
* Follow on to XCP (MIT/ICSI)

4)

(2\
Fair Sharing is more than a moral issue

» By what metric should we evaluate CC?
» One metric: average flow completion time (FCT)

* Let’'s compare FCT with RCP and TCP
—Ignore XCP curve....

47

Vs

With FQ Routers

* Flows can pick whatever CC scheme they want
—Can open up as many TCP connections as they want

* There is no such thing as a “cheater”
—To first order...

» Bandwidth share does not depend on RTT

+ Does require complication on router
— Cheating not a problem, so there’s little motivation
—But WFQ is used at larger granularities

Vs

RCP Algorithm

* Packets carry “rate field”

* Routers insert “fair share” f in packet header
—Router inserts FS only if it is smaller than current value

* Routers calculate f by keeping link fully utilized
—Remember basic equation: Sum(Min[f,r]) =C

*)

:ﬁ)w Duration (secs) vs. Flow Size

Flow Completion Time: TCP vs. PS (and XCP) h

Active Flows vs. time

0.1

o e
0 2000 4000 6000 8000 10000 0 50 100 150 200 250 300

i I
Flow Size [pkts] Time (secs) ')

(" 2\
Why the improvement?

250
200 TcP \I ' L

150 P

'sequence number

sequence number

simulation time [sec]

e N
Why is Scott a Moron?
Or why does Bob Briscoe think so?
50
J
e N

Charge people for congestion!

J
e N
Giving equal shares to “flows” is silly
* What if you have 8 flows, and | have 4?
—Why should you get twice the bandwidth
» What if your flow goes over 4 congested hops, and
mine only goes over 1?
—Why shouldn’t you be penalized for using more scarce
bandwidth?
* And what is a flow anyway?
—TCP connection
— Source-Destination pair?
—Source?
)
e N

Datacenter Networks

» Use ECN as congestion markers
« Whenever | get ECN bit set, | have to pay $$$

* Now, there’s no debate over what a flow is, or
what fair is...

* Idea started by Frank Kelly, backed by much math
—Great idea: simple, elegant, effective
—Never going to happen...

2)

Ve

What makes them special?

* Huge scale:
—100,000s of servers in one location

* Limited geographic scope:
—High bandwidth
—Very low RTT

 Extreme latency requirements
—With real money on the line

* Single administrative domain
—No need to follow standards, or play nice with others

+ Often “green field” deployment

—So can “start from scratch”... 5)

Deconstructing Datacenter
Packet Transport

Mohammad Alizadeh, Shuang Yang, Sachin Katti,
Nick McKeown, Balaji Prabhakar, Scott Shenker

Stanford University U.C. Berkeley/ICSI

HotNets 2012 55

Transport in Datacenters

» Two fundamental requirements
— High fabric utilization
« Good for all traffic, esp. the large flows
— Low fabric latency (propagation + switching)
« Critical for latency-sensitive traffic

- Active area of research
— DCTCP[sIGCOMM’10], D3[SIGCOMM'11]
HULL[NSDI'11], D2TCP[SIGCOMM'12]
PDQ[siGcoMM’12], DeTail[SIGCOMM'12]

vastly improve

performance,
but fairly complex

HotNets 2012 57

DC Fabric: Just a Giant Switch!

Transport in Datacenters

e Web Application

ho does she know?
. . @at has she done?
Latency is King P

— Web app response time
depends on completion
of 100s of small RPCs

But, traffic also diverse
— Mice AND Elephants

— Often, elephants are the
root cause of latency

HotNets 2012 56

pFabric in 1 Slide

Packets carry a single priority #
* e.g., prio = remaining flow size

pFabric Switches
« Very small buffers (e.g., 10-20KB)
» Send highest priority / drop lowest priority pkts

pFabric Hosts

« Send/retransmit aggressively
« Minimal rate control: just prevent congestion collapse

HotNets 2012 58

DC Fabric: Just a Giant Switch!

HotNets 2012 59

K I I

HotNets 2012 60

10

DC Fabric: Just a Giant Switch!

X

HotNets 2012 61

DC transport = Objective?

» Minimize avg FCT

Flow scheduling
on giant switch

nf-:::"‘-__—’/'
- S AR,
\ > N~z
\ \ 7S
\ ’

B
—

_,a
i
~g

3

= ingress & egress RX

HotNets 2012 CapaCity constraints o
pFabric Design

HotNets 2012 65

DC Fabric: Just a Giant Switch!

Elz
E

X

HotNets 2012 62

A&V
PERANALY

“Ideal” Flow Scheduling

Problem is NP-hard ® [Bar-Noy et al.]
— Simple greedy algorithm: 2-approximation

HotNets 2012 64

pFabric Switch

» Priority Scheduling > Priority Dropping
send higher priority drop low priority
packets first packets first

Il \
| E M 1 Switch
\ 1| Port
\\ ,I
A

- --" small “bag” of
prio = remaining flow size packets per-port

HotNets 2012 66

11

Near-Zero Buffers

pFabric Rate Control

« Buffers are very small (~1 BDP)
—e.g., C=10Gbps, RTT=15ps > BDP = 18.75KB
— Today’s switch buffers are 10-30x larger

Priority Scheduling/Dropping Complexity
» Worst-case: Minimum size packets (64B)
— 51.2ns to find min/max of ~300 numbers
— Binary tree implementation takes 9 clock cycles
— Current ASICs: clock = 1-2ns

HotNets 2012 67

pFabric Rate Control

« Priority scheduling & dropping in fabric also
simplifies rate control
— Queue backlog doesn’t matter

One task:
Prevent congestion collapse
when elephants collide

HotNets 2012 68

Why does this work?

« Minimal version of TCP

1. Start at line-rate
« Initial window larger than BDP

2. No retransmission timeout estimation
« Fix RTO near round-trip time

3. No fast retransmission on 3-dupacks
 Allow packet reordering

HotNets 2012 69

Evaluation

» 54 port fat-tree: 10Gbps links, RTT = ~12ps
- Realistic traffic workloads
— Web search, Data mining

1

—— Flow Stza i ' 17
0.8/ = = = Total Bytss /

* From Alizadeh et al.
[SIGCOMM 2010]

o8 <100k | ,IV >10MB

§ sesamssaas ’l ---------)
Il 55% of flows 5% of flows
ozr 3% of bytes , 35% of bytes

HotNets 2012 71

Key observation:
Need the highest priority packet destined for a port
available at the port at any given time.

« Priority scheduling
» High priority packets traverse fabric as quickly as possible

+ What about dropped packets?
» Lowest priority > not needed till all other packets depart
» Buffer larger than BDP > more than RTT to retransmit

HotNets 2012 70

Evaluation: Mice FCT

(<100KB)
Average 99th pPercentile
1S Ter + Dropran -TCP + DropTal
I e £ #9l+-ocree /
£ gl|-=-MINTCP + pFabric = 40| -+-MinTCP + pFabric
§ 7| ~-LineRate + pFabric| $ 35{|+LineRate + pFabric|
2 !]|=-tdeal 2 | tdeal
g6 Ew
S 5 32
é 4 i 20
is Iy
i io
2 2 4
01 0..-2 0..-3 04 05 06 07 08
Load

01 02 03 04 05 06 07 08
Load

Near-ideal: almost no jitter
HotNets 2012 72

12

Evaluation: Elephant FCT

HotNets 2012

Nomalized Flow Completion Time

(>10MB)
Congestion collapse

:; =-TCP + DropTai at high load w/o

—+DCTCP MR rate control
16{| ~#+~MinTCP + pFabric
14| =*LineRate + pFabric|

—B-Ideal
12
10

.1

02 03 04 05 06 07 08
Load

73

Summary

pFabric’s entire design:
Near-ideal flow scheduling across DC fabric

+ Switches
— Locally schedule & drop based on priority

* Hosts
— Aggressively send & retransmit
— Minimal rate control to avoid congestion collapse

HotNets 2012 74

13

