
1

1

Congestion Control

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

Announcements

• Project 3 is out!

2

A few words from Panda….

3 4

Congestion Control Review

Did not have slides last time

Going to review key points

Caveat: In this lecture

• Sometimes CWND is in units of MSS’s
–Because I want to count CWND in small integers

– This is only for pedagogical purposes

• Sometimes CWND is in bytes
–Because we actually are keeping track of real windows

– This is how TCP code works

• Figure it out from context….

5 6

Load and Delay

Average
Packet delay

Load

Typical queuing system with bursty arrivals

Must balance utilization versus delay and loss

Average
Packet loss

Load

2

Not All Losses the Same

• Duplicate ACKs: isolated loss
–Still getting ACKs

• Timeout: possible disaster
–Not enough dupacks

–Must have suffered several losses

7

AIMD

• Additive increase
–On success of last window of data, increase by one MSS

• Multiplicative decrease
–On loss of packet, divide congestion window in half

8

9

Leads to the TCP “Sawtooth”

t

Window

halved

Loss

A

Simple geometric analysis

10

Timeouts

t

cwnd

1

RTT

maxW

2

maxW

Packet drop rate, p =1/ A, where A=
3

8
W

max

2

Throughput, B =
A

W
max

2

æ

è
ç

ö

ø
÷RTT

=
3

2

1

RTT p

11

AIMD Starts Too Slowly!

t

Window

It could take a long
time to get started!

Need to start with a small CWND to avoid overloading the network.

“Slow-Start” Phase

• Start with a small congestion window
– Initially, CWND is 1 MSS

–So, initial sending rate is MSS/RTT

• But want to increase quickly
–Rather than just use additive increase….

– ..we enter “slow-start” phase (actually “fast start”)

• Sender starts at a slow rate (hence the name)
– but increases exponentially until first loss

12

3

13

Slow Start in Action

Double CWND per round-trip time

Simple implementation:

 on each ack, CWND += MSS

D A D D A A D D

Src

Dest

D D

1 2 4 3

A A A A

8

14

Slow Start and the TCP Sawtooth

Loss

Exponential
“slow start”

t

Window

Why is it called slow-start? Because TCP originally had
no congestion control mechanism. The source would just

start by sending a whole window’s worth of data.

What is really looks like…

15 16

Congestion Control Details

17

Increasing CWND

• Increase by MSS for every successful window

• Increase a fraction of MSS per received ACK

• # packets (thus ACKs) per window: CWND / MSS

• Increment per ACK:

CWND += MSS / (CWND / MSS)

• Termed: Congestion Avoidance
–Very gentle increase

 18

Fast Retransmission

• Sender sees 3 dupACKs

• Multiplicative decrease: CWND halved

4

19

CWND with Fast Retransmit

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 3

3 duplicate

ACKs

cwnd = 2

20

Loss Detected by Timeout

• Sender starts a timer that runs for RTO seconds

• Restart timer whenever ack for new data arrives

• If timer expires:
–Set SSTHRESH  CWND / 2 (“Slow-Start Threshold”)

–Set CWND  MSS

–Retransmit first lost packet

–Execute Slow Start until CWND > SSTHRESH

–After which switch to Additive Increase

21

Summary of Decrease

• Cut CWND half on loss detected by dupacks
– “fast retransmit”

• Cut CWND all the way to 1 MSS on timeout
–Set ssthresh to cwnd/2

• Never drop CWND below 1 MSS

Summary of Increase

• “Slow-start”: increase cwnd by MSS for each ack

• Leave slow-start regime when either:
– cwnd > SSThresh

–Packet drop

• Enter AIMD regime
– Increase by MSS for each window’s worth of acked data

22

23

Repeating Slow Start After Timeout

t

Window

Slow-start restart: Go back to CWND of 1 MSS, but take

advantage of knowing the previous value of CWND.

Slow start in operation until
it reaches half of previous
CWND, I.e., SSTHRESH

Timeout
Fast

Retransmission

SSThresh

Set to Here

More Advanced Fast Restart

• Set ssthresh to cwnd/2

• Set cwnd to cwnd/2 + 3
– for the 3 dup acks already seen

• Increment cwnd by 1 MSS for each additional

duplicate ACK

• After receiving new ACK, reset cwnd to ssthresh

24

5

Example

• Consider a TCP connection with:
–MSS=10bytes

– ISN=100

–CWND=100 bytes

– Last ACK was for seq # 110
 i.e., receiver expecting next packet to have seq. no. 110

• Packets with seq. no. 110 to 200 are in flight
–What ACKs do they generate?

–And how does the sender respond?

25

History

• ACK 110 (due to 120) cwnd=100 dup#1

• ACK 110 (due to 130) cwnd=100 dup#2

• ACK 110 (due to 140) cwnd=100 dup#3

• RXMT 110 ssthresh=50 cwnd=80

• ACK 110 (due to 150) cwnd=90

• ACK 110 (due to 160) cwnd=100

• ACK 110 (due to 170) cwnd=110 xmit 210

• ACK 110 (due to 180) cwnd=120 xmit 220

26

History (cont’d)

• ACK 110 (due to 190) cwnd=130 xmit 230

• ACK 110 (due to 200) cwnd=140 xmit 240

• ACK 210 (due to 110 rxmit) cwnd=ssthresh=50

xmit 250

• ACK 220 (due to 210) cwnd=60

• …..

27 28

Why AIMD?

Four alternatives

• AIAD: gentle increase, gentle decrease

• AIMD: gentle increase, drastic decrease

• MIAD: drastic increase, gentle decrease
– too many losses: eliminate

• MIMD: drastic increase and decrease

29 30

AIMD Sharing Dynamics

A B x1

D E

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

 No congestion  rate increases by one packet/RTT every RTT

 Congestion  decrease rate by factor 2

Rates equalize  fair share

x2

6

31

AIAD Sharing Dynamics

A B
x1

D E
 No congestion  x increases by one packet/RTT every RTT

 Congestion  decrease x by 1

0

10

20

30

40

50

60

1

2
8

5
5

8
2

1
0
9

1
3
6

1
6
3

1
9
0

2
1
7

2
4
4

2
7
1

2
9
8

3
2
5

3
5
2

3
7
9

4
0
6

4
3
3

4
6
0

4
8
7

x2

32

Other Congestion Control Topics

TCP fills up queues

• Means that delays are large for everyone

• And when you do fill up queues, many packets

have to be dropped (not really)

• Alternative: Random Early Drop (LBL)
–Drop packets on purpose before queue is full

–Set drop probability D as a function of queue size

–Keep queue average small, but tolerate bursts

33

What if loss isn’t congestion-related?

• Can use Explicit Congestion Notification (ECN)

• Bit in IP packet header, that is carried up to TCP

• When RED router would drop, it sets bit instead
–Congestion semantics of bit exactly like that of drop

• Advantages:
–Don’t confuse corruption with congestion

–Don’t confuse recovery with rate adjustment

34

How does this work at high speed?

• Throughput = (MSS/RTT) sqrt(3/2p)
–Assume that RTT = 100ms, MSS=1500bytes

• What value of p is required to go 100Gbps?
–Roughly 2 x 10-12

• How long between drops?
–Roughly 16.6 hours

• How much data has been sent in this time?
–Roughly 6 petabits

• These are not practical numbers! 35

Adapting TCP to High Speed

• One approach: once speed is past some

threshold, change equation to p-.8 rather than p-.5

– Let the additive constant in AIMD depend on CWND

–At very high speeds, increase CWND by more than MSS

• We will discuss other approaches next later…

36

7

How “Fair” is TCP?

• Throughput depends inversely on RTT

• If open K TCP flows, get K times more bandwidth!

• What is fair, anyway?

37

What happens if hosts “cheat”?

• Can get more bandwidth by being more

aggressive
–Source can set CWND =+ 2MSS upon success

–Gets much more bandwidth (see forthcoming HW4)

• Currently we require all congestion-control

protocols to be “TCP-Friendly”
– To use no more than TCP does in similar setting

• But Internet remains vulnerable to non-friendly

implementations
–Need router support to deal with this… 38

Router-Assisted Congestion Control

• There are two different tasks:
– Isolation/fairness

–Adjustment

• Isolation/fairness:
–We would like to make sure each flow gets its “fair

share”

– This protects flows from cheaters
 Safety/Security issue

–No longer requires everyone use same CC algorithm
 Innovation issue

• Adjustment:
–Can routers help flows find the right sending rate?

39

Isolation: Intuition

• Treat each “flow” separately
– For now, flows are packets between same Source/Dest.

• Each flow has its own FIFO queue in router

• Service flows in a round-robin fashion
–When line becomes free, take packet from next flow

• Assuming all flows are sending MTU packets, all

flows can get their fair share
–But what if not all are sending at full rate?

–And some are sending at more than their share?

40

Max-Min Fairness

• Given set of bandwidth demands ri and total

bandwidth C, max-min bandwidth allocations are:

ai = min(f, ri)

• where f is the unique value such that Sum(ai) = C

• This is what round-robin service gives
– if all packets are MTUs

• Property:
– If you don’t get full demand, no one gets more than you

41 42

Example

• C = 10; r1 = 8, r2 = 6, r3 = 2; N = 3

• C/3 = 3.33 
–Can service all of r3

–Remove r3 from the accounting: C = C – r3 = 8; N = 2

• C/2 = 4 
–Can’t service all of r1 or r2

–So hold them to the remaining fair share: f = 4

8

6

2

4
4

2

f = 4:
min(8, 4) = 4

min(6, 4) = 4

min(2, 4) = 2

10

8

43

Fair Queuing (FQ)

• Implementation of round-robin generalized to case

where not all packets are MTUs

• Weighted fair queueing (WFQ) lets you assign

different flows different shares

• WFQ is implemented in almost all routers
–Variations in how implemented
 Packet scheduling (here)

 Just packet dropping (AFD)

With FQ Routers

• Flows can pick whatever CC scheme they want
–Can open up as many TCP connections as they want

• There is no such thing as a “cheater”
– To first order…

• Bandwidth share does not depend on RTT

• Does require complication on router
–Cheating not a problem, so there’s little motivation

–But WFQ is used at larger granularities

44

FQ is really “processor sharing”

• Every current flow gets same service

• When flows end, other flows pick up extra service

• FQ realizes these rates through packet scheduling

• But we could just assign them directly
– This is the Rate-Control Protocol (RCP) [Stanford]
 Follow on to XCP (MIT/ICSI)

45

RCP Algorithm

• Packets carry “rate field”

• Routers insert “fair share” f in packet header
–Router inserts FS only if it is smaller than current value

• Routers calculate f by keeping link fully utilized
–Remember basic equation: Sum(Min[f,ri]) = C

46

Fair Sharing is more than a moral issue

• By what metric should we evaluate CC?

• One metric: average flow completion time (FCT)

• Let’s compare FCT with RCP and TCP
– Ignore XCP curve….

47 48

Flow Completion Time: TCP vs. PS (and XCP)

Flow Duration (secs) vs. Flow Size # Active Flows vs. time

9

Why the improvement?

50

Why is Scott a Moron?

Or why does Bob Briscoe think so?

Giving equal shares to “flows” is silly

• What if you have 8 flows, and I have 4?
–Why should you get twice the bandwidth

• What if your flow goes over 4 congested hops, and

mine only goes over 1?
–Why shouldn’t you be penalized for using more scarce

bandwidth?

• And what is a flow anyway?
– TCP connection

–Source-Destination pair?

–Source?
51

Charge people for congestion!

• Use ECN as congestion markers

• Whenever I get ECN bit set, I have to pay $$$

• Now, there’s no debate over what a flow is, or

what fair is…

• Idea started by Frank Kelly, backed by much math
–Great idea: simple, elegant, effective

–Never going to happen…

52

53

Datacenter Networks

What makes them special?

• Huge scale:
– 100,000s of servers in one location

• Limited geographic scope:
–High bandwidth

–Very low RTT

• Extreme latency requirements
–With real money on the line

• Single administrative domain
–No need to follow standards, or play nice with others

• Often “green field” deployment
–So can “start from scratch”… 54

10

Deconstructing Datacenter
Packet Transport

Mohammad Alizadeh, Shuang Yang, Sachin Katti,

Nick McKeown, Balaji Prabhakar, Scott Shenker

Stanford University U.C. Berkeley/ICSI

HotNets 2012 55

Transport in Datacenters

• Latency is King

– Web app response time
depends on completion
of 100s of small RPCs

• But, traffic also diverse

– Mice AND Elephants

– Often, elephants are the
root cause of latency

Large-scale Web Application

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic Alice

Who does she know?

What has she done?

Minnie Eric Pics Videos Apps

HotNets 2012 56

Transport in Datacenters

• Two fundamental requirements

– High fabric utilization

• Good for all traffic, esp. the large flows

– Low fabric latency (propagation + switching)

• Critical for latency-sensitive traffic

• Active area of research

– DCTCP[SIGCOMM’10], D3[SIGCOMM’11]

 HULL[NSDI’11], D2TCP[SIGCOMM’12]

 PDQ[SIGCOMM’12], DeTail[SIGCOMM’12]

vastly improve
performance,

but fairly complex

HotNets 2012 57

pFabric in 1 Slide

HotNets 2012

Packets carry a single priority #

• e.g., prio = remaining flow size

pFabric Switches

• Very small buffers (e.g., 10-20KB)

• Send highest priority / drop lowest priority pkts

pFabric Hosts

• Send/retransmit aggressively

• Minimal rate control: just prevent congestion collapse

58

DC Fabric: Just a Giant Switch!

HotNets 2012

H1 H2 H3 H4 H5 H6 H7 H8 H9

59 HotNets 2012

H1 H2 H3 H4 H5 H6 H7 H8 H9

DC Fabric: Just a Giant Switch!

60

11

H
1

H

2
H

3

H
4

H

5

H
6

H

7

H
8

H

9

H
1

H

2

H
3

H
4

H

5

H
6

H

7

H
8

H

9

HotNets 2012

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

TX RX

DC Fabric: Just a Giant Switch!

61 HotNets 2012

DC Fabric: Just a Giant Switch!

H
1

H

2
H

3

H
4

H

5

H
6

H

7

H
8

H

9

H
1

H

2

H
3

H
4

H

5

H
6

H

7

H
8

H

9

TX RX

62

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

HotNets 2012

Objective?
 Minimize avg FCT

DC transport =
Flow scheduling
on giant switch

ingress & egress
capacity constraints

TX RX

63

“Ideal” Flow Scheduling

Problem is NP-hard  [Bar-Noy et al.]

– Simple greedy algorithm: 2-approximation

HotNets 2012

1

2

3

1

2

3

64

HotNets 2012

pFabric Design

65

pFabric Switch

HotNets 2012

Switch
Port

7 1

9 4 3

Priority Scheduling
send higher priority
packets first

Priority Dropping
drop low priority
packets first

6 3 2

5

small “bag” of
packets per-port

66

prio = remaining flow size

12

Near-Zero Buffers

• Buffers are very small (~1 BDP)

– e.g., C=10Gbps, RTT=15µs → BDP = 18.75KB

– Today’s switch buffers are 10-30x larger

Priority Scheduling/Dropping Complexity

• Worst-case: Minimum size packets (64B)

– 51.2ns to find min/max of ~300 numbers

– Binary tree implementation takes 9 clock cycles

– Current ASICs: clock = 1-2ns

HotNets 2012 67

pFabric Rate Control

• Priority scheduling & dropping in fabric also
simplifies rate control

– Queue backlog doesn’t matter

HotNets 2012

H1 H2 H3 H4 H5 H6 H7 H8 H9

50%
Loss

One task:
Prevent congestion collapse
when elephants collide

68

pFabric Rate Control

• Minimal version of TCP

1. Start at line-rate

• Initial window larger than BDP

2. No retransmission timeout estimation

• Fix RTO near round-trip time

3. No fast retransmission on 3-dupacks

• Allow packet reordering

HotNets 2012 69

Why does this work?

Key observation:

Need the highest priority packet destined for a port
available at the port at any given time.

• Priority scheduling

 High priority packets traverse fabric as quickly as possible

• What about dropped packets?
 Lowest priority → not needed till all other packets depart

 Buffer larger than BDP → more than RTT to retransmit

HotNets 2012 70

Evaluation

HotNets 2012

55% of flows
3% of bytes

5% of flows
35% of bytes

• 54 port fat-tree: 10Gbps links, RTT = ~12µs

• Realistic traffic workloads

– Web search, Data mining * From Alizadeh et al.
 [SIGCOMM 2010]

<100KB >10MB

71

Evaluation: Mice FCT
(<100KB)

HotNets 2012

Average 99th Percentile

Near-ideal: almost no jitter
72

13

Evaluation: Elephant FCT
(>10MB)

HotNets 2012

Congestion collapse
at high load w/o
rate control

73

Summary

pFabric’s entire design:

Near-ideal flow scheduling across DC fabric

• Switches

– Locally schedule & drop based on priority

• Hosts

– Aggressively send & retransmit

– Minimal rate control to avoid congestion collapse

HotNets 2012 74

