
1

Advanced Topics in

Congestion Control

EE122 Fall 2012

Scott Shenker

http://inst.eecs.berkeley.edu/~ee122/

Materials with thanks to Jennifer Rexford, Ion Stoica, Vern Paxson

and other colleagues at Princeton and UC Berkeley

New Lecture Schedule

• T 11/6: Advanced Congestion Control

• Th 11/8: Wireless (Yahel Ben-David)

• T 11/13: Misc. Topics (w/Colin)
–Security, Multicast, QoS, P2P, etc.

• Th 11/15: Misc. + Network Management

• T 11/20: SDN

• Th 11/22: Holiday!

• T 11/27: Alternate Architectures

• Th 11/29: Summing Up (Final Lecture) 2

Office Hours This Week

• After lecture today

• Thursday 3:00-4:00pm

3

Announcements

• Participation emails:
– If you didn’t get one, please email Thurston.

• 128 students still haven’t participated yet
–Only seven lectures left

–You do the math.

4

Project 3: Ask Panda

5

6

Some Odds and Ends about

Congestion Control

Clarification about TCP “Modes”

• Slow-start mode:
–CWND =+ MSS on every ACK

– [use at beginning, and after time-out]

• Congestion avoidance mode:
–CWND =+ MSS/(CWND/MSS) on every ACK

– [use after CWND>SSTHRESH in slow-start]

– [and after fast retransmit]

• Fast restart mode [after fast retransmit]
–CWND =+ MSS on every dupACK until hole is filled

–Then revert back to congestion avoidance mode
7

8

Delayed Acknowledgments (FYI)

• Receiver generally delays sending an ACK
–Upon receiving a packet, sets a timer

 Typically, 200 msec; at most, 500 msec

– If application generates data, go ahead and send
 And piggyback the acknowledgment

– If the timer expires, send a (non-piggybacked) ACK

– If out-of-order segment arrives, immediately ack

– (if available window changes, send an ACK)

• Limiting the wait
–Receiver supposed to ACK at least every second full-

sized packet (“ack every other”)
 This is the usual case for “streaming” transfers

9

Performance Effects of Acking Policies

• How do delayed ACKs affect performance?
– Increases RTT

–Window slides a bit later throughput a bit lower

• How does ack-every-other affect performance?
– If sender adjusts CWND on incoming ACKs, then CWND

opens more slowly
 In slow start, 50% increase/RTT rather than 100%

 In congestion avoidance, +1 MSS / 2 RTT, not +1 MSS / RTT

• What does this suggest about how a receiver
might cheat and speed up a transfer?

10

Round-

Trip

Time
(RTT)

Sender Receiver

• Rule: grow window by one

 full-sized packet for each

 valid ACK received

• Send M (distinct) ACKs for

one packet

• Growth factor proportional

 to M

• What’s the fix?

ACK-splitting

11

Page fetch from CNN.com

0

10000

20000

30000

40000

50000

60000

0 0.2 0.4 0.6 0.8 1
Time (sec)

S
e

q
u

e
n

c
e

N

u
m

b
e

r
(b

y
te

s
)

Modified Client

Normal Client

10 line change to Linux TCP

(Courtesy of

Stefan Savage)

12

Problems with Current Approach

to Congestion Control

Goal of Today’s Lecture

• AIMD TCP is the conventional wisdom

• But we know how to do much better

• Today we discuss some of those approaches…

13

Problems with Current Approach?

• Take five minutes….

14

TCP fills up queues

• Means that delays are large for everyone

• And when you do fill up queues, many packets

have to be dropped
–Not always, but it does tend to increase packet drops

• Alternative: Random Early Drop (LBL)
–Drop packets on purpose before queue is full

15

Random Early Drop (or Detection)

• Measure average queue size A with exp.

weighting
–Allows short bursts of packets without over-reacting

• Drop probability is a function of A
–No drops if A is very small

– Low drop rate for moderate A’s

–Drop everything if A is too big

16

RED Dropping Probability

17

Advantages of RED

• Keeps queues smaller, while allowing bursts
– Just using small buffers in routers can’t do the latter

• Reduces synchronization between flows
–Not all flows are dropping packets at once

18

What if loss isn’t congestion-related?

• Can use Explicit Congestion Notification (ECN)

• Bit in IP packet header (actually two)
–TCP receiver returns this bit in ACK

• When RED router would drop, it sets bit instead
–Congestion semantics of bit exactly like that of drop

• Advantages:
–Doesn’t confuse corruption with congestion

–Doesn’t confuse recovery with rate adjustment

19

How does AIMD work at high speed?

• Throughput = (MSS/RTT) sqrt(3/2p)
–Assume that RTT = 100ms, MSS=1500bytes

• What value of p is required to go 100Gbps?
–Roughly 2 x 10-12

• How long between drops?
–Roughly 16.6 hours

• How much data has been sent in this time?
–Roughly 6 petabits

• These are not practical numbers! 20

Adapting TCP to High Speed

• One approach:
– Let AIMD constants depend on CWND

• At very high speeds,
– Increase CWND by more than MSS in a RTT

–Decrease CWND by less than ½ after a loss

• We will discuss other approaches later…

21

High-Speed TCP Proposal

22

 Bandwidth Avg Cwnd w

(pkts)

 Increase a(w) Decrease b(w)

 1.5 Mbps 12.5 1 0.50

 10 Mbps 83 1 0.50

 100 Mbps 833 6 0.35

 1 Gbps 8333 26 0.22

 10 Gbps 83333 70 0.10

This changes the TCP Equation

• Throughput ~ p-.8 (rather than p-.5)

• Whole point of design: to achieve a high

throughput, don’t need such a tiny drop rate….

23

How “Fair” is TCP?

• Throughput depends inversely on RTT

• If open K TCP flows, get K times more bandwidth!

• What is fair, anyway?

24

What happens if hosts “cheat”?

• Can get more bandwidth by being more

aggressive
–Source can set CWND =+ 2MSS upon success

–Gets much more bandwidth (see forthcoming HW4)

• Currently we require all congestion-control

protocols to be “TCP-Friendly”
–To use no more than TCP does in similar setting

• But Internet remains vulnerable to non-friendly

implementations
–Need router support to deal with this… 25

Router-Assisted Congestion Control

• There are two different tasks:
– Isolation/fairness

–Adjustment

26

Adjustment

• Can routers help flows reach right speed faster?
–Can we avoid this endless searching for the right rate?

• Yes, but we won’t get to this for a few slides….

27

Isolation/fairness

• Want each flow gets its “fair share”
–No matter what other flows are doing

• This protects flows from cheaters
–Safety/Security issue

• Does not require everyone use same CC algorithm
– Innovation issue

28

Isolation: Intuition

• Treat each “flow” separately
–For now, flows are packets between same Source/Dest.

• Each flow has its own FIFO queue in router

• Service flows in a round-robin fashion
–When line becomes free, take packet from next flow

• Assuming all flows are sending MTU packets, all

flows can get their fair share
–But what if not all are sending at full rate?

–And some are sending at more than their share?

29

Max-Min Fairness

• Given set of bandwidth demands ri and total

bandwidth C, max-min bandwidth allocations are:

ai = min(f, ri)

 where f is the unique value such that Sum(ai) = C

• This is what round-robin service gives
– if all packets are MTUs

• Property:
– If you don’t get full demand, no one gets more than you

–Use it or lose it: you don’t get credit for not using link

30

Example

• Assume link speed C is 10mbps

• Have three flows:
–Flow 1 is sending at a rate 8mbps

–Flow 2 is sending at a rate 6mbps

–Flow 3 is sending at a rate 2mbps

• How much bandwidth should each get?
–According to max-min fairness?

31

32

Example

• C = 10; r1 = 8, r2 = 6, r3 = 2; N = 3

• C/3 = 3.33
–Can service all of r3

–Remove r3 from the accounting: C = C – r3 = 8; N = 2

• C/2 = 4
–Can’t service all of r1 or r2

–So hold them to the remaining fair share: f = 4

8

6

2

4
4

2

f = 4:
min(8, 4) = 4

min(6, 4) = 4

min(2, 4) = 2

10

33

Fair Queuing (FQ)

• Implementation of round-robin generalized to case

where not all packets are MTUs

• Weighted fair queueing (WFQ) lets you assign

different flows different shares

• WFQ is implemented in almost all routers
–Variations in how implemented

 Packet scheduling (here)

 Just packet dropping (AFD)

Enforcing fairness through dropping

• Drop rate for flow i should be di = (1 − rfair/ri)+

• Resulting rate for flow is ri(1-di)=MIN[ri,rfair]

• Estimate ri with “shadow buffer” of recent packets
–Estimate is terrible for small ri, but di = 0 for those

–Estimate is decent for large ri, and that’s all that matters!

• Implemented on much of Cisco’s product line
–Approximate Fair Dropping (AFD)

34

With Fair Queueing or AFD Routers

• Flows can pick whatever CC scheme they want
–Can open up as many TCP connections as they want

• There is no such thing as a “cheater”
–To first order…

• Bandwidth share does not depend on RTT

• Does require some complication on router
–But certainly within reason

35

FQ is really “processor sharing”

• PS is really just round-robin at bit level
–Every current flow with packets gets same service rate

• When flows end, other flows pick up extra service

• FQ realizes these rates through packet scheduling
–AFD through packet dropping

• But we could just assign them directly
–This is the Rate-Control Protocol (RCP) [Stanford]

 Follow on to XCP (MIT/ICSI)

 36

RCP Algorithm

• Packets carry “rate field”

• Routers insert “fair share” f in packet header
–Router inserts FS only if it is smaller than current value

• Routers calculate f by keeping link fully utilized
–Remember basic equation: Sum(Min[f,ri]) = C

37

Fair Sharing is more than a moral issue

• By what metric should we evaluate CC?

• One metric: average flow completion time (FCT)

• Let’s compare FCT with RCP and TCP
– Ignore XCP curve….

38

39

Flow Completion Time: TCP vs. PS (and XCP)

Flow Duration (secs) vs. Flow Size # Active Flows vs. time

Why the improvement?

RCP (and similar schemes)

• They address the “adjustment” question

• Help flows get up to full rate in a few RTTs

• Fairness is merely a byproduct of this approach
–One could have assigned different rates to flows

41

Summary of Router Assisted CC

• Adjustment: helps get flows up to speed
–Huge improvement in FTC performance

• Isolation: helps protect flows from cheaters
–And allows innovation in CC algorithms

• FQ/AFD impose “max-min fairness”
–On each link, each flow has right to fair share

42

43

Why is Scott a Moron?

Or why does Bob Briscoe think so?

Giving equal shares to “flows” is silly

• What if you have 8 flows, and I have 4…
–Why should you get twice the bandwidth?

• What if your flow goes over 4 congested hops, and

mine only goes over 1?
–Why not penalize for using more scarce bandwidth?

• And what is a flow anyway?
–TCP connection

–Source-Destination pair?

–Source?

44

flow rate fairness

dismantling a religion
<draft-briscoe-tsvarea-fair-01.pdf>

Bob Briscoe

Chief Researcher, BT Group

IETF-68 tsvwg Mar 2007

status: individual draft
final intent: informational

intent next: tsvwg WG item after (or at) next draft

http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf

Charge people for congestion!

• Use ECN as congestion markers

• Whenever I get ECN bit set, I have to pay $$$

• No debate over what a flow is, or what fair is…

• Idea started by Frank Kelly, backed by much math
–Great idea: simple, elegant, effective

–Never going to happen…

46

47

Datacenter Networks

What makes them special?

• Huge scale:
– 100,000s of servers in one location

• Limited geographic scope:
–High bandwidth (10Gbps)

–Very low RTT

• Extreme latency requirements
–With real money on the line

• Single administrative domain
–No need to follow standards, or play nice with others

• Often “green field” deployment
–So can “start from scratch”… 48

Deconstructing Datacenter
Packet Transport

Mohammad Alizadeh, Shuang Yang, Sachin Katti,

Nick McKeown, Balaji Prabhakar, Scott Shenker

Stanford University U.C. Berkeley/ICSI

HotNets 2012 49

Transport in Datacenters

• Latency is King

– Web app response time
depends on completion
of 100s of small RPCs

• But, traffic also diverse

– Mice AND Elephants

– Often, elephants are the
root cause of latency

Large-scale Web Application

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic

App
Logic Alice

Who does she know?

What has she done?

Minnie Eric Pics Videos Apps

HotNets 2012 50

Transport in Datacenters

• Two fundamental requirements

– High fabric utilization

• Good for all traffic, esp. the large flows

– Low fabric latency (propagation + switching)

• Critical for latency-sensitive traffic

• Active area of research

– DCTCP[SIGCOMM’10], D3[SIGCOMM’11]

 HULL[NSDI’11], D2TCP[SIGCOMM’12]

 PDQ[SIGCOMM’12], DeTail[SIGCOMM’12]

vastly improve
performance,

but fairly complex

HotNets 2012 51

pFabric in 1 Slide

HotNets 2012

Packets carry a single priority #

• e.g., prio = remaining flow size

pFabric Switches

• Very small buffers (e.g., 10-20KB)

• Send highest priority / drop lowest priority pkts

pFabric Hosts

• Send/retransmit aggressively

• Minimal rate control: just prevent congestion collapse

52

DC Fabric: Just a Giant Switch!

HotNets 2012

H1 H2 H3 H4 H5 H6 H7 H8 H9

53

HotNets 2012

H1 H2 H3 H4 H5 H6 H7 H8 H9

DC Fabric: Just a Giant Switch!

54

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

HotNets 2012

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

TX RX

DC Fabric: Just a Giant Switch!

55

HotNets 2012

DC Fabric: Just a Giant Switch!

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

TX RX

56

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

H
1

H

2

H
3

H

4

H
5

H

6

H
7

H

8

H
9

HotNets 2012

Objective?
 Minimize avg FCT

DC transport =
Flow scheduling
on giant switch

ingress & egress
capacity constraints

TX RX

57

“Ideal” Flow Scheduling

Problem is NP-hard [Bar-Noy et al.]

– Simple greedy algorithm: 2-approximation

HotNets 2012

1

2

3

1

2

3

58

HotNets 2012

pFabric Design

59

pFabric Switch

HotNets 2012

Switch
Port

7 1

9 4 3

Priority Scheduling
send higher priority
packets first

Priority Dropping
drop low priority
packets first

6 3 2

5

small “bag” of
packets per-port

60

prio = remaining flow size

Near-Zero Buffers

• Buffers are very small (~1 BDP)

– e.g., C=10Gbps, RTT=15µs → BDP = 18.75KB

– Today’s switch buffers are 10-30x larger

Priority Scheduling/Dropping Complexity

• Worst-case: Minimum size packets (64B)

– 51.2ns to find min/max of ~300 numbers

– Binary tree implementation takes 9 clock cycles

– Current ASICs: clock = 1-2ns

HotNets 2012 61

pFabric Rate Control

• Priority scheduling & dropping in fabric also
simplifies rate control

– Queue backlog doesn’t matter

HotNets 2012

H1 H2 H3 H4 H5 H6 H7 H8 H9

50%
Loss

One task:
Prevent congestion collapse
when elephants collide

62

pFabric Rate Control

• Minimal version of TCP

1. Start at line-rate

• Initial window larger than BDP

2. No retransmission timeout estimation

• Fix RTO near round-trip time

3. No fast retransmission on 3-dupacks

• Allow packet reordering

HotNets 2012 63

Why does this work?

Key observation:

Need the highest priority packet destined for a port
available at the port at any given time.

• Priority scheduling

 High priority packets traverse fabric as quickly as possible

• What about dropped packets?
 Lowest priority → not needed till all other packets depart

 Buffer larger than BDP → more than RTT to retransmit

HotNets 2012 64

Evaluation

HotNets 2012

55% of flows
3% of bytes

5% of flows
35% of bytes

• 54 port fat-tree: 10Gbps links, RTT = ~12µs

• Realistic traffic workloads

– Web search, Data mining * From Alizadeh et al.
 [SIGCOMM 2010]

<100KB >10MB

65

Evaluation: Mice FCT
(<100KB)

HotNets 2012

Average 99th Percentile

Near-ideal: almost no jitter
66

Evaluation: Elephant FCT
(>10MB)

HotNets 2012

Congestion collapse
at high load w/o
rate control

67

Summary

pFabric’s entire design:

Near-ideal flow scheduling across DC fabric

• Switches

– Locally schedule & drop based on priority

• Hosts

– Aggressively send & retransmit

– Minimal rate control to avoid congestion collapse

HotNets 2012 68

