Advanced Topics In
Congestion Control

EE122 Fall 2012

Scott Shenker
http://inst.eecs.berkeley.edu/~eel22/

Materials with thanks to Jennifer Rexford, lon Stoica, Vern Paxson
and other colleagues at Princeton and UC Berkeley

New Lecture Schedule

T 11/6:
«Th 11/8:

T 11/13:

Advanced Congestion Control
Wireless (Yahel Ben-David)

Misc. Topics (w/Colin)

— Security, Multicast, QoS, P2P, etc.

«Th 11/15:
T 11/20:
«Th 11/22:
T 11/27:
 Th 11/29:

Misc. + Network Management
SDN

Holiday!

Alternate Architectures

Summing Up (Final Lecture)

-

Office Hours This Week

* After lecture today

e Thursday 3:00-4:00pm

-

Announcements

 Participation emails:
—If you didn’t get one, please email Thurston.

« 128 students still haven't participated yet
— Only seven lectures left
—You do the math.

-

Project 3: Ask Panda

Some Odds and Ends about
Congestion Control

-

Clarification about TCP “Modes”

« Slow-start mode:
— CWND =+ MSS on every ACK
—[use at beginning, and after time-out]

« Congestion avoidance mode:
— CWND =+ MSS/(CWND/MSS) on every ACK
—[use after CWND>SSTHRESH in slow-start]
—[and after fast retransmit]

« Fast restart mode |[after fast retransmit]
— CWND =+ MSS on every dupACK until hole is filled
—Then revert back to congestion avoidance mode

Delayed Acknowledgments (FYI)

* Receiver generally delays sending an ACK

—Upon receiving a packet, sets a timer
e Typically, 200 msec; at most, 500 msec

— If application generates data, go ahead and send
* And piggyback the acknowledgment

— If the timer expires, send a (non-piggybacked) ACK
— If out-of-order segment arrives, immediately ack
— (if available window changes, send an ACK)

 Limiting the wait
— Receliver supposed to ACK at |least every second full-

sized packet (“ack every other”)
e This is the usual case for “streaming” transfers

Performance Effects of Acking Policies

 How do delayed ACKs affect performance?
—Increases RTT
—Window slides a bit later = throughput a bit lower

 How does ack-every-other affect performance?

—If sender adjusts CWND on incoming ACKs, then CWND
opens more slowly
* In slow start, 50% increase/RTT rather than 100%
* In congestion avoidance, +1 MSS /2 RTT, not +1 MSS/ RTT

« What does this suggest about how a receiver
might cheat and speed up a transfer?

ACK-splitting

Sender Receiver
Round;
Trip< * Rule: grow window by one
Time full-sized packet for each

(RTT) valid ACK received

« Send M (distinct) ACKs for
one packet

» Growth factor proportional
to M

 What's the fix?

10

- p
10 line change to Linux TCP

Page fetch from CNN.com
60000 -

50000 -

40000 - (Courtesy of

Stefan Savage)

30000 -

20000 -

-4 Modified Client
-m- Normal Client

Sequence Number (bytes)

10000 -

0 x x x |
0 0.2 0.4 0.6 0.8 1

n

Problems with Current Approach
to Congestion Control

12

Goal of Today’s Lecture

« AIMD TCP Is the conventional wisdom
 But we know how to do much better

« Today we discuss some of those approaches...

13

-

Problems with Current Approach?

 Take five minutes....

)

TCP fills up gueues

* Means that delays are large for everyone

« And when you do fill up queues, many packets
have to be dropped
— Not always, but it does tend to increase packet drops

* Alternative: Random Early Drop (LBL)
— Drop packets on purpose before queue is full

15

Random Early Drop (or Detection)

* Measure average gueue size A with exp.
weighting
— Allows short bursts of packets without over-reacting

 Drop probability is a function of A
—No drops if A is very small
— Low drop rate for moderate A’s
— Drop everything if A is too big

16

-

RED Dropping Probability

Probability of
dropping
incoming packet

Max Probability
Pmax

P ————— — ——— ———————

RED ends
RED begins Virtual Drop
x / Tail
Max .
TH T Average queue size (packets)

"

Advantages of RED

« Keeps queues smaller, while allowing bursts
—Just using small buffers in routers can’t do the latter

* Reduces synchronization between flows
— Not all flows are dropping packets at once

18

What if loss isn’t congestion-related?

« Can use Explicit Congestion Notification (ECN)

* Bit in IP packet header (actually two)
— TCP receiver returns this bit in ACK

 When RED router would drop, it sets bit instead
— Congestion semantics of bit exactly like that of drop

« Advantages:
—Doesn’t confuse corruption with congestion
—Doesn’t confuse recovery with rate adjustment

19

How does AIMD work at high speed?

* Throughput = (MSS/RTT) sqrt(3/2p)
—Assume that RTT = 100ms, MSS=1500bytes

« What value of p is required to go 100Gbps?
—Roughly 2 x 1012

* How long between drops?
— Roughly 16.6 hours

« How much data has been sent in this time?
— Roughly 6 petabits

* These are not practical numbers! 20

Adapting TCP to High Speed

* One approach:
— Let AIMD constants depend on CWND

At very high speeds,
—Increase CWND by more than MSS ina RTT
— Decrease CWND by less than 2 after a loss

* We will discuss other approaches later...

21

-

High-Speed TCP Proposal

Bandwidth | Avg Cwnd w | Increase a(w) | Decrease b(w)
(pkts)
1.5 Mbps 12.5 1 0.50
10 Mbps 83 1 0.50
100 Mbps 833 6 0.35
1 Gbps 8333 26 0.22
10 Gbps 83333 70 0.10

2

-

This changes the TCP Equation

» Throughput ~ p~8 (rather than p-°)

* Whole point of design: to achieve a high
throughput, don’t need such a tiny drop rate....

J

-

How “Fair” is TCP?

* Throughput depends inversely on RTT
* If open K TCP flows, get K times more bandwidth!

* What is fair, anyway?

*)

What happens if hosts “cheat”?

« Can get more bandwidth by being more
aggressive
—Source can set CWND =+ 2MSS upon success
— Gets much more bandwidth (see forthcoming HW4)

* Currently we require all congestion-control
protocols to be “TCP-Friendly”
—To use no more than TCP does in similar setting

* But Internet remains vulnerable to non-friendly
Implementations
—Need router support to deal with this...

25

-

Router-Assisted Congestion Control

\

 There are two different tasks:
— Isolation/fairness
— Adjustment

%

-

Adjustment

 Can routers help flows reach right speed faster?
— Can we avoid this endless searching for the right rate?

* Yes, but we won't get to this for a few slides....

)

|solation/fairness

« Want each flow gets its “fair share”
— No matter what other flows are doing

* This protects flows from cheaters
— Safety/Security issue

* Does not require everyone use same CC algorithm
—Innovation issue

28

|Isolation: Intuition

 Treat each “flow” separately
—For now, flows are packets between same Source/Dest.

« Each flow has its own FIFO queue in router

 Service flows in a round-robin fashion
—When line becomes free, take packet from next flow

« Assuming all flows are sending MTU packets, all
flows can get their fair share
— But what if not all are sending at full rate?
—And some are sending at more than their share? 29

Max-Min Failrness

 Given set of bandwidth demands r;and total
bandwidth C, max-min bandwidth allocations are:

a, = min(f, r,)

where f is the unique value such that Sum(a) = C

 This is what round-robin service gives
—if all packets are MTUs

* Property:
—If you don’t get full demand, no one gets more than you
—Use it or lose it: you don’t get credit for not using link 5,

Example

* Assume link speed C is 10mbps

* Have three flows:
—Flow 1 is sending at a rate 8mbps
—Flow 2 is sending at a rate 6mbps
—Flow 3 is sending at a rate 2mbps

 How much bandwidth should each get?
— According to max-min fairness?

31

-

Example

«C=10; r;=8,1,=6,r;3=2;
*C/3=3.33—>

—Can service all of r,

—Remove r; from the accounting: C=C —r; =8; N =2

e Cl2=4 —>

—Can'’t service all of ry orr,
— So hold them to the remaining fair share: f =4

8

2

P —

— 4
|
L »

N=3

f=4
min(8, 4) =4
min(c, 4) =

min(2, 4) = 2

)

Fair Queuing (FQ)

* Implementation of round-robin generalized to case
where not all packets are MTUs

* Weighted fair queueing (WFQ) lets you assign
different flows different shares

« WFQ Iis implemented in almost all routers

—Variations in how implemented
e Packet scheduling (here)
e Just packet dropping (AFD)

33

Enforcing fairness through dropping

* Drop rate for flow i should be d; = (1 = r;,/ry).
* Resulting rate for flow is r;(1-d,)=MINI[r;, I+

* Estimate r, with “shadow buffer” of recent packets
— Estimate is terrible for small r;, but d, = O for those
— Estimate is decent for large r;, and that's all that matters!

* Implemented on much of Cisco’s product line
— Approximate Fair Dropping (AFD)

34

With Fair Queueing or AFD Routers

* Flows can pick whatever CC scheme they want
— Can open up as many TCP connections as they want

* There is no such thing as a “cheater”
—To first order...

« Bandwidth share does not depend on RTT

* Does require some complication on router
— But certainly within reason

35

FQ is really “processor sharing”

* PS is really just round-robin at bit level
— Every current flow with packets gets same service rate

* When flows end, other flows pick up extra service

* FQ realizes these rates through packet scheduling
— AFD through packet dropping

* But we could just assign them directly

—This is the Rate-Control Protocol (RCP) [Stanford]

* Follow on to XCP (MIT/ICSI)
36

RCP Algorithm

« Packets carry “rate field”

« Routers insert “fair share” f in packet header
— Router inserts FS only if it is smaller than current value

* Routers calculate f by keeping link fully utilized
—Remember basic equation: Sum(Minlf,r]) = C

37

Fair Sharing is more than a moral iIssue

* By what metric should we evaluate CC?
* One metric: average flow completion time (FCT)

* Let's compare FCT with RCP and TCP

—Ignore XCP curve....

38

Flow Completion Time: TCP vs. PS (and XCP)

-low Duration (secs) vs. Flow Size

Active Flows vs. time

~N

‘IIUﬁ N I I I I

- XCP - _. x qgﬁ 9000
1 :I :::=::| E: ?I: :éi(: 8000 i o -r ,L s , : k. rr_.'.':.'_‘;-._ . h .
i ||_ I
* 5'.
7000 : |
10 |] : H
; 6000 |
T |
g 5000 L.
. : a 4000 A
1 E XCP —-»---
! TCP |
_— | 3000 PS NEE NEE NEE EER
‘.‘J‘ - N tL“‘ . “““ “ | 2000 HE NN DN NNN NEN DN ANN NNN ENN NN ANN NN NN NEN NEN DNN NN NEN NN NER NEEN Il_l
1000 ' ' | | |

D'I I I I I
0 2000 4000 6000 8000 10000

Flow Size [pkts]

O 50 100 150 200 250 300

Time (secs)

/

-

Why the improvement?

sequence number

sequence number

250

1 1.2

1.4 1.6 1.8

7 8 9 10
simulation time [sec]

11 12 13

RCP (and similar schemes)

* They address the “adjustment” question
* Help flows get up to full rate in a few RTTs

 Fairness is merely a byproduct of this approach
— One could have assigned different rates to flows

41

Summary of Router Assisted CC

« Adjustment: helps get flows up to speed
—Huge improvement in FTC performance

* |solation: helps protect flows from cheaters
— And allows innovation in CC algorithms

 FQ/AFD impose “max-min fairness”
—On each link, each flow has right to fair share

42

Why Is Scott a Moron?

Or why does Bob Briscoe think so?

43

Giving equal shares to “flows” is silly

« What if you have 8 flows, and | have 4...
—Why should you get twice the bandwidth?

« What if your flow goes over 4 congested hops, and
mine only goes over 1?
—Why not penalize for using more scarce bandwidth?

* And what is a flow anyway?
— TCP connection
— Source-Destination pair?
—Source?

44

\ flow rate fairness
dismantling a religion

< =
status: Individual draft
final intent;: informational
intent next: tsvwg WG item after (or at) next draft

Bob Briscoe
Chief Researcher, BT Group
IETF-68 tsvwg Mar 2007

http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf
http://www.ietf.org/internet-drafts/draft-briscoe-tsvarea-fair-01.pdf

Charge people for congestion!

« Use ECN as congestion markers
* Whenever | get ECN bit set, | have to pay $$%$
* No debate over what a flow is, or what fair is...

* |dea started by Frank Kelly, backed by much math
— Great idea: simple, elegant, effective
—Never going to happen...

46

Datacenter Networks

47

What makes them special?

* Huge scale:
—100,000s of servers in one location

 Limited geographic scope:
— High bandwidth (10Gbps)
—Very low RTT

« Extreme latency requirements
— With real money on the line

 Single administrative domain
— No need to follow standards, or play nice with others

» Often “green field” deployment
— S0 can “start from scratch”... 48

Deconstructing Datacenter
Packet Transport

Mohammad Alizadeh, Shuang Yang, Sachin Katti,
Nick McKeown, Balaji Prabhakar, Scott Shenker

Stanford University U.C. Berkeley/ICSI

HotNets 2012 49

Transport in Datacenters

Web Application

ho does she know?
 Latency is King S o —

— Web app response time
depends on completion
of 100s of small RPCs

« But, traffic also diverse

— Mice AND Elephants

— Often, elephants are the

root cause of latency

HotNets 2012

-
o

X :
;o B I & i Alice

N, App Tir
A7

T -

./I\.b ‘o ol N e

NS
S g o T

Eric Minnie Pics Apps Videos
N et _ = \J.‘a‘—-\ ‘ .\‘
— \\-—-\.‘{% I) \ D)
= gl [BEW e/

/

50

Transport In Datacenters

« Two fundamental requirements

— High fabric utilization
« Good for all traffic, esp. the large flows

— Low fabric latency (propagation + switching)
 Critical for latency-sensitive traffic

« Active area of research
— DCTCP[siGcoMM’10], D3[SIGCOMM’11]
HULL[NSDI'11], D2TCP[SIGCOMM'12]
PDQ[siGcomM’12], DeTail[siGCoMM’12]

vastly improve

performance,
but fairly complex

HotNets 2012 51

pFabric in 1 Slide

Packets carry a single priority #
* e.g., prio = remaining flow size

pFabric Switches
« Very small buffers (e.g., 10-20KB)

« Send highest priority / drop lowest priority pkts

pFabric Hosts

« Send/retransmit aggressively
« Minimal rate control: just prevent congestion collapse

HotNets 2012 52

DC Fabric: Just a Giant Switch!

DC Fabric: Just a Giant Switch!

DC Fabric: Just a Giant Switch!

DC Fabric: Just a Giant Switch!

e -5
. | B
—m iIE
i i
x B =T ™=a

DC transport =

Flow scheduling

on giant switch

Objective?
» Minimize avg FCT

AV AR/ NV

TX

HotNets 2012

iIngress & egress
capacity constraints

“Ideal” Flow Scheduling

Problem is NP-hard ® [Bar-Noy et al.]
— Simple greedy algorithm: 2-approximation

_'ﬂ]—+

1

‘ N

‘ w

HotNets 2012 58

pFabric Design

pFabric Switch

> Priority Scheduling > Priority Dropping
send higher priority drop low priority
packets first packets first

/ smaII “bag” of
prio = remaining flow size packets per-port

HotNets 2012 60

Near-Zero Buffers

« Buffers are very small (~1 BDP)
— e.g., C=10Gbps, RTT=15us > BDP = 18.75KB
— Today’s switch buffers are 10-30x larger

Priority Scheduling/Dropping Complexity
 Worst-case: Minimum size packets (64B)
— 51.2ns to find min/max of ~300 numbers

— Binary tree implementation takes 9 clock cycles
— Current ASICs: clock = 1-2ns

HotNets 2012 61

pFabric Rate Control

* Priority scheduling & dropping in fabric also
simplifies rate control
— Queue backlog doesn’t matter == =

One task:
Prevent congestion collapse
when elephants collide

HotNets 2012

pFabric Rate Control

« Minimal version of TCP

1. Start at line-rate
 Initial window larger than BDP

2. No retransmission timeout estimation
* Fix RTO near round-trip time

3. No fast retransmission on 3-dupacks
« Allow packet reordering

HotNets 2012

63

Why does this work?

Key observation:

Need the highest priority packet destined for a port
available at the port at any given time.

* Priority scheduling
» High priority packets traverse fabric as quickly as possible

- What about dropped packets?
» Lowest priority - not needed till all other packets depart
» Buffer larger than BDP - more than RTT to retransmit

HotNets 2012 64

Evaluation

« 54 port fat-tree: 10Gbps links, RTT = ~12us
e Realistic traffic workloads

— Web search, Data mining * From Alizadeh et al.
[SIGCOMM 2010]

S | 1

T | T L L L | T L L |
Flow Size

08H = = = Total Bytes I /
oel <100KB ,I" >10ME
LDL E B EEEEEEER / AL L L LA L
I 559 of flows 5% of flows
Zil 3% of bytes 35% of bytes

Flow Size (Bytes)

HotNets 2012 65

Evaluation: Mice FCT
(<100KB)

Average 99th Percentile
10 I I I T T T 50 L L .‘ T T T
° -©-TCP + DropTail 0,45k-e-TCP+DropTa|I
€ 9=4-pcTCP £ 45+pcTep
'; 8/|~*-MinTCP + pFabric g40*—1lt-|\/!inTCP+pFabritlz
2 7/[=LineRate + pFabric g 35~ LineRate + pFabric
g -8-|deal a -&-|deal
E 6/ 0
8
: °
L 4
©
33
®
=
2 1 5
‘ ‘ ‘ ‘ ‘ ‘ 1
01 02 03 04 05 06 07 08 01 02 03 04 05 06 07 08
Load Load

Near-ideal: almost no jitter

HotNets 2012 66

Evaluation: Elephant FCT
(>10MB)

Congestion collapse
-©-TCP + DropTail at hlgh load W/O

—+—DCTCP Bl rate control
1 —#¥=MinTCP + pFabric

| = LineRate + pFabric
| E-ldeal

N
o

_
A O 0

- -
(@)

H O O

Normalized Flow Completion Time

HotNets 2012 67

Summary

pFabric’s entire design:
Near-ideal flow scheduling across DC fabric

 Switches
— Locally schedule & drop based on priority

- Hosts
— Aggressively send & retransmit
— Minimal rate control to avoid congestion collapse

HotNets 2012

68

