
This document lives here:
http://inst.eecs.berkeley.edu/~ee122/fa12/project3/project-spec.pdf

Project 3 - Routers, Protocols and Firewalls
UC Berkeley, EE 122, Fall 2011

Version 1

Part 1 due on November 16, 2012, 11:59:59 PM

The goal of this project is for you to learn about routers, protocols and firewalls; in short, how
real networks work. You will be given a plug computer configured to run as a router which
can also function as a firewall. Your task is to write the rules for the firewall to allow/disallow a
specified set of TCP connections.

This month-long project is divided into 2 parts, each part has it own submission deadline. In the
first part, you will have to programmatically configure a firewall to manage connections based
on simple set of rules. The goal of the first part is to become familiar with the environment of the
router and the firewall’s API. In the second part, you will be extending the set of rules to manage
more complex patterns of connections. Here, the goal is to understand the structure of protocols
like FTP and HTTP, and build rules to manage them effectively.

This document first explains the router environment - how each plug computer is configured as
a NAT router. Then it will elaborate on the firewall functionality present in the plug and how it
can be used to allow / deny / monitor connections passing through the plug computer. Later it
will specify the set of rules that you are supposed to write for each part of the project.

Configuration
Each plug computer has two network interfaces - a wired Ethernet interface, and a wireless
interface. As shown in the figure, the wireless interface is configured to automatically connect to
AirBears, and the wired Ethernet interface is to be connected to the Ethernet port of your laptop,
using the provided Ethernet cable. The plug computers are configured to act as NAT routers -
the wireless interface is the external port which connects to the Internet through AirBears, and
your laptop is connected to the internal port, effectively becoming a client behind the NAT. More
details on preparing and connecting to the plug computer are provided in the Guide to your
Plug Computer (http://inst.eecs.berkeley.edu/~ee122/fa12/project3/guide-to-plug.pdf). Please
read this document in detail before attempting to use the plug.

http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf
http://inst.eecs.berkeley.edu/~ee122/fa11/project3/guide-to-plug.pdf

This system is designed to let you do all your Internet activities through it (maybe a little slowly),
except those connections that are blocked by the plug’s internal firewall. The goal of this project
is for you to implement rules for the firewall based on the provided specifications. In the rest of
this document, we may refer to the plug computer as a router.

Software Architecture
To give you some context, the software architecture in
the plug is as follows (see adjoining figure). The
wired and wireless ports are internally connected together
by a virtual switch (Open vSwitch), which has the
capability to forward or drop packets as instructed. The
Network Operating System (NOS) gives these instructions
(rules) to the virtual switch using the OpenFlow protocol.
The EECore library uses the firewall code that you will
write to instruct NOS to allow/block/monitor certain
connections.

From the project’s point of view, you only need to
understand the firewall component. For the more daring
minds who want to know more about this, take a look at this
brief overview about POX (http://www.noxrepo.org/pox/about-
pox/).

Firewall - Model and API
All TCP connections through the router have to pass through a firewall. The firewall has the
following functionality

1. It can allow a TCP connection through the router. In other words, the allowed connection
can continue uninterrupted.

2. It can deny a TCP connection, that is, it will not forward any packets that belong to the
TCP connection (uniquely identified by the 4-tuple <source ip, source port, destination
ip, destination port>).

3. It can monitor all the data in a TCP connection, and if required, allow or deny other
connections based on that data.

These functionalities are implemented using an event driven system - as packets arrive at the
router, events are raised according to various conditions. The event-handler function of each
event decides the fate of the connection whose packet raised the event. This will explained
shortly.

There are 3 types of events in our firewall system.

1. ConnectionIn: This event is raised when an attempt to set up a new TCP connection
is detected by the router, that is, when the first SYN packet of the TCP connection
arrives at the router. Based on the characteristics of the connection (destination IP,
destination port, etc), the system can take any of the 4 actions:

a. Deny the connection attempt.
b. Allow the connection to continue uninterrupted.
c. Defer the allow/deny decision for later. This temporarily allows the connection

attempt to continue, but raises the DeferredConnectionIn (see next) event
when data transfer starts.

d. Mark the connection for monitoring of all data transferred through it (that is, only
if the connection is allowed to continue).

2. DeferredConnectionIn: If a TCP connection has been marked for deferred
decision, then this event is raised when the first packet carrying application-level data
arrives at the router. Note that for any connection, this event can occur only after the
ConnectionIn event.

3. MonitorData: If a TCP connection has been marked for monitoring, then every packet
that belongs to the connection will raise this event when it arrives at the router. The
data in the packet can be inspected, and accordingly the connection may be allowed
to continue or denied. Again, for a connection, this event can occur only after the
ConnectionIn event.

Implementing rules for the firewall requires appropriately handling these events. The Firewall
class defined in /root/pox/ext/firewall.py specifies the 3 event handlers. The functionality of
each function is explained as follows.

class Firewall (object):

This class defines the event handler functions corresponding to
the three possible events in the system.

def _handle_ConnectionIn (self, event, flow, packet):

This function is called by the system on a ConnectionIn
event, that is, when the first packet of a new TCP
connection is received by the router.

packet: This is an object representing the packet whose

arrival raised this ConnectionIn event, that is the
first SYN packet of a new TCP connection. Details of
this object are explained later.

flow: This is an object representing the TCP connection. It

has the following fields.
flow.src : Source IP address of the TCP connection
flow.srcport : Source port of the TCP connection
flow.dst : Destination IP addr. of the TCP connection
flow.dstport : Destination port of the TCP connection

event: This is an object representing the new connection

event. Details of this object are unnecessary. You
only need to remember the set of actions that can
performed as a response to the event. If no action is
specified, then the connection is by default not be
allowed. These actions are as follows
event.action.forward = True

Allows the connection to proceed.
event.action.forward = False

Drops the current packet and disallows the
connection by dropping every packet that belong
to this connection.

event.action.deny = True
Drops the current packet and disallows the
connection by sending a TCP RST to the source
of the connection. This is the preferred way of
denying a connection over event.action.forward =
False (can you think why this is preferred?)

event.action.defer = True
Allows the connection to start, and sets the
system to raise the DeferredConnectionIn event
when the first data packet in this connection
arrives at the router.

event.action.monitor_forward = True
Allows monitoring of outgoing (from your system
to Internet) data on the connection. In other
words, every packet of data sent out over the TCP
connection raises the MonitorData event.

event.action.monitor_backward = True

Similar to monitor_forward, but allows monitoring
of incoming data (from Internet to your system)
on the connection.

 def _handle_DeferredConnectionIn (self, event, flow, packet):

This function is called by the system on a
DeferredConnectionIn event. As explained before, this
only happens on the connections that have been marked
for deferring (using event.action.defer = True) in the
corresponding ConnectionIn event.

packet: Similar to that of ConnectionIn, this represents

the first data packet in a TCP connection that raised
this DeferredConnectionIn event. Details later.

flow: Same as that of ConnectionIn.
event: Same as that of ConenctionIn, except that

event.action.defer is unavailable. In other words, you
cannot defer the connection any more, and you have to
either allow it, or disallow it, or monitor it.

def _handle_MonitorData (self, event, packet, reverse):

This function is called by the system on MonitorData event,
that is, when a packet is received that belongs to the
connections that have been marked for monitoring. If a
connection has been marked for only outgoing events, then
only outgoing packets will raise this event. And vice
versa.
reverse: False or True, based on whether the event was

raised on outgoing (forward) packet or incoming
(backward) packet, respectively.

packet: Similar to that of ConnectionIn, this represents
the packet in a TCP connection that raised this
MonitorData event. Details later.

event: This is just a placeholder. This has no actions.
Ignore this for now.

The packet parameter in the above functions is an object of type ethernet. As the name
suggests, this represents an Ethernet packet. The ethernet class has a property called
payload that returns are an object of type ipv4. This representing the IP data (including the
the header) within the Ethernet packet. Similarly, the payload property of ipv4 class returns
an object of type tcp (if packet belongs to a TCP connection), which represents the TCP data
(including the header). And payload of tcp gives the raw payload data.

To illustrate the concept, take a look at the figure below. This illustrates the object structure of a
TCP packet carrying HTTP data. The object representing each layer encapsulates the data
belonging to the higher layer. So for a HTTP packet, packet.payload.payload.payload
gives the raw HTTP data.

All these classes (ethernet, ipv4, tcp) are subclasses of parent class packet_base. To
know more details about properties and functionalities of these classes, take a look at the
directory /root/pox/lib/packet/.

The default firewall.py provided to you allows all incoming TCP connection (note the
event.action.Forward = True in the function _handle_ConnectionIn). You are
supposed to use the API explained earlier to appropriately allow / deny / defer / monitor
connections based on the characteristics of the connection (destination port, etc) and the
transferred data.

Note that the system is hard-coded to use the Firewall class from the file firewall.py. So
implement your rules in that file. Creating a different file and/or making a subclass of Firewall
will not work. You have to modify the Firewall class in the same file to implement your own
rules.

Firewall Rules - what you have to implement

Part 1 - Due on November 16, 2012, 11:59:59 PM
For the first part, implement a firewall that does the following.

1. Each line in the file /root/pox/ext/banned-ports.txt has a port number. Deny all TCP
connections which has one of these as the destination (external) ports. As you work
through this, it might help to realize that in this case the first packet from a connection is
the SYN from your computer to the server on the internet.

2. Each line in the file /root/pox/ext/banned-domains.txt has a domain name

(like google.com). Deny all HTTP connections to these domains as well as their
subdomains1. For example, for google.com, you will have to deny connections
www.google.com as well as subdomains like images.google.com. However, do not deny
connections to the domain mygoogle.com. [Hint: There are multiple ways to do it, but the
right way to do it is to identify the connection by analyzing its HTTP header information.]

3. Each line in the file /root/pox/ext/monitored-strings.txt is an IP address and a search

string (separated by a colon). That is,
<IP address>:<search string>

For each connection made to any of the IP addresses present in the file (that is, external
IP address of a connection matches any in the file), count the number of times the
corresponding search string appears in the incoming or outgoing data on the connection.
After the connection is over, write (append) the count to the file /root/pox/ext/counts.txt
in the following CSV format

<external IP address>,<external port>,<search string>,<count>
You may treat a connection to be over if it has not transferred any data for more than 30
seconds. The order of writing counts to the file does not matter. You must however
flush after each write, i.e. make sure that your writes actually end up on disk, not
in a buffer somewhere.

The search strings can be of arbitrary length (can be larger a single packet size) and
the matched substring in the connection data may cross the boundary of a packet. You
have to keep data in memory appropriately to identify such matches. However, your
implementation should be efficient in using memory. For example, you should not keep
the complete connection data in memory. Also, you are not allowed to use files to store
your data (you may use them for debugging purpose but not for the final submission).

Furthermore, there can be multiple search strings associated with the same IP address.
For every connection to the IP, you are supposed to count and output all the search
strings associated with that IP.

Here is an short example to explain all of this. Lets say, there are the following two
search strings.

1.2.3.4:abc
1.2.3.4:abcabc

Let say, a connection from your laptop to 1.2.3.4:5678 transfers the following data.
Outgoing data: abcdefabcabc

1 http://en.wikipedia.org/wiki/Subdomain

http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain
http://en.wikipedia.org/wiki/Subdomain

Incoming data: defabcabcqweabc
Your firewall should append the following lines to the file /root/pox/ext/counts.txt .

1.2.3.4,5678,abc,6
1.2.3.4,5678,abcabc,2

Both, incoming and outgoing data have 3 instances of “abc” and 1 instance of “abcabc”
each.

Your rules must be such that only the connections that fit the above criteria should be blocked
and monitored, and everything else must be allowed.

If you want to use timer, you should use the POX timer, rather than Python’s Threading.Timer
class. Refer to this link for more information on how POX timers work.

In the plug, you will find 3 sample files, banned-ports.txt, banned-domains.txt, and monitored-
strings.txt, in the directory /root/pox/ext/ . These files contain sample data that have been
provided to you to understand the input format. We are going to test your firewall with our own
set of 3 files, and your firewall should work against arbitrary ports / domains / search strings that
may be present in those files. You can assume that these 3 input files will always be located in
the said locations, that is, in /root/pox/ext/ .

Tips and Tricks

Part 1
Some advise about how to start off the project.

● Start by reading the guide to the plug computer in detail. Prepare the USB stick with the
given image, and verify whether your plug works. Familiarize yourself with the plug’s
software environment. This will require you to work in a console environment a lot, so
better get used to it if you are not.

● Understand the given APIs and test each event one by one. For example, try configuring
the ConnectionIn handler to block connections to port 80, and see whether you are
able to browse the Internet through the router or not.

● Read up about the HTTP protocol, and understand what information they carry. Use that
information to filter out which connection to allow / deny / defer / monitor.

Submission Details
You are required to turn in the following files -

1. firewall.py
2. README.txt

The README.txt must contain the following information.

1. Your and your partner’s (if any) names

http://www.google.com/url?q=https%3A%2F%2Fopenflow.stanford.edu%2Fdisplay%2FONL%2FPOX%2BWiki%23POXWiki-ExecutingCodeintheFutureusingaTimer&sa=D&sntz=1&usg=AFQjCNF3nWhWiVVwh1L31DjO8QBRd198PA

2. What problems or challenges did you face in implementing your firewall?

Cheating and Other Rules
You should not touch any other code other than firewall.py. We are aware that Python is
self-modifying and therefore you could write code that rewrites the other files in the system. You
will receive zero credit for turning in a solution that modifies any other file in the filesystem.

The project is designed to be solved independently, but we STRONGLY encourage
to work in pairs. Grading will remain the same whether you choose to work alone or with a
partner; both partners will receive the same grade regardless of the distribution of work between
the two partners (so choose a partner wisely!).

You may not share code with any classmates other than your partner. You may discuss
the assignment requirements or your solutions -- away from a computer and without sharing
code -- but you should not discuss the detailed nature of your solution. Assignments suspected
of cheating or forgery will be handled according to the Student Code of Conduct. Apparently
23% of academic misconduct cases at a certain junior university are in Computer Science, but
we expect you all to uphold high academic integrity and pride in doing your own work.

