Hierarchical Routing

- Is a natural way for routing to scale
 - Size
 - Network Administration
 - Governance
- Exploits address aggregation and allocation
- Allows multiple metrics at different levels of the hierarchy

Benefits of Transit v/s Peering

Peering

- The business relationship whereby ISPs reciprocally provide to each other connectivity to each others’ transit customers

Transit

- The business relationship whereby one ISP provides (usually sells) access to all destinations in its routing table

Moving from Transit to Peering
Inter-AS tasks

- Suppose router in AS1 receives datagram for which dest is outside AS1.
 - Q: With 200M hosts how is each host going to know which AS a host address belongs to? Router should forward packet toward the gateway routers, but which one?
 - AS1 needs:
 1. to learn which dests are reachable through AS2 and AS3
 2. to propagate this reachability info to all routers in AS1

Class-based addressing did not scale well

- Example: an organization initially needs 100 addresses
 - Allocate it a class C address
 - Organization grows to need 300 addresses
 - Class B address is allocated (~64K hosts)
 - That’s overkill - a huge waste
 - Only about 8200 class B addresses!
 - Artificial Address crises

Addressing

- Every router must be able to forward based on *any* destination IP address
 - One strategy: Have a row for each address
 - There would be 10^8 rows!
 - Better strategy: Have a row for a range of addresses
 - If addresses are assigned at random that wouldn’t work too well
 - MAC addresses
 - Addresses allocation is a big deal.

IP addressing: CIDR

- **CIDR: Classless InterDomain Routing**
 - net portion of address of arbitrary length: subnet
 - address format: `a.b.c.d/x`, where `x` is # bits in subnet portion of address

```
11001000 00010111 00010000 00000000

200.23.16.0/23
```
CIDR: Example

Suppose fifty computers in a network are assigned IP addresses 128.23.9.0 - 128.23.9.49
- They share the prefix 128.23.9
- Is this the longest prefix?
 - Range is 01111111 00001111 00001001 00000000 to 01111111 00001111 00001001 00110001
 - How to write 01111111 00001111 00001001 00000000? 0x?
 - Convention: 128.23.9/26
- /26 is called the subnet mask
- There are 32-26 = 6 bits for the 50 computers
- 2^6 = 64 addresses

Address Assignment: Example

Q: How does network get subnet part of IP addr?
A: gets allocated portion of its provider ISP's address space

<table>
<thead>
<tr>
<th>ISP's block</th>
<th>11001000 00101111 00010000 00000000</th>
<th>200.23.16.0/20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization 0</td>
<td>11001000 00101111 00000000 00000000</td>
<td>200.23.18.0/23</td>
</tr>
<tr>
<td>Organization 1</td>
<td>11001000 00101111 00001010 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>Organization 2</td>
<td>11001000 00101111 00001010 00000000</td>
<td>200.23.20.0/23</td>
</tr>
<tr>
<td>Organization 7</td>
<td>11001000 00101111 00001110 00000000</td>
<td>200.23.30.0/23</td>
</tr>
</tbody>
</table>

Hierarchical addressing: route aggregation

Hierarchical addressing allows efficient advertisement of routing information:

ISP-R-Us has a more specific route to Organization 1

Assigning IP address (Ideally)

- A host gets its IP address from the IP address block of its organization
- An organization gets an IP address block from its ISP's address block
- An ISP gets its address block from its own provider OR from one of the 3 routing registries:
 - ARIN: American Registry for Internet Numbers
 - RIPE: Reseaux IP Europeens
 - APNIC: Asia Pacific Network Information Center
- Each Autonomous System (AS) is assigned a 16-bit number (65536 total)
- Currently 10,000 AS's in use
Example: Setting forwarding table in router 1d
- Suppose AS1 learns (via inter-AS protocol) that subnet x is reachable via AS3 (gateway 1c) but not via AS2.
- Inter-AS protocol propagates reachability info to all internal routers.
- Router 1d determines from intra-AS routing info that its interface I is on the least cost path to 1c.
- Puts in forwarding table entry \((x, I)\).

Example: Choosing among multiple ASes
- Now suppose AS1 learns from the inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- To configure forwarding table, router 1d must determine towards which gateway it should forward packets for dest x.
- This is also the job of inter-AS routing protocol.

Name of the Game: Reachability
- Interdomain routing is about implementing policies of reachability
 - Routing efficiency and performance is important, but not essential
 - ISPs could be competitors and do not want to share internal network statistics such as load and topology
- Use Border Gateway Protocol (BGP)
 - Border routers communicate over TCP port 179
 - A Path Vector Protocol
 - Communicate entire paths: Route Advertisements
 - A Router Can be involved multiple BGP sessions

Internet inter-AS routing: BGP
- BGP (Border Gateway Protocol): the de facto standard
- BGP provides each AS a means to:
 - Obtain subnet reachability information from neighboring ASs.
 - Propagate reachability information to all AS-internal routers.
 - Determine “good” routes to subnets based on reachability information and policy.
- allows subnet to advertise its existence to rest of Internet: “I am here”

BGP
- Border Routers
 - from the same AS speak IBGP
 - from different AS’s speak EBGP
- EBGP and IBGP are essentially the same protocol
 - IBGP can only propagate routes it has learned directly from its EBGP neighbors
 - All routers in the same AS form an IBGP mesh
 - Important to keep IBGP and EBGP in sync
I-BGP and E-BGP

- **AS1**
- **AS2**
- **AS3**

BGP basics

- Pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections: **BGP sessions**
 - BGP sessions need not correspond to physical links.
- When AS2 advertises a prefix to AS1, AS2 is **promising** it will forward any datagrams destined to that prefix towards the prefix.
 - AS2 can aggregate prefixes in its advertisement

Sharing routes

- One router can participate in many BGP sessions.
- Initially ... node advertises ALL routes it wants neighbor to know (could be > 50K routes)
- Ongoing ... only inform neighbor of changes

BGP messages

- BGP messages exchanged using TCP.
- BGP messages:
 - OPEN: opens TCP connection to peer and authenticates sender
 - UPDATE: advertises new path (or withdraws old)
 - KEEPALIVE keeps connection alive in absence of UPDATES; also ACKs OPEN request
 - NOTIFICATION: reports errors in previous msg; also used to close connection

Distributing reachability info

- With eBGP session between 3a and 1c, AS3 sends prefix reachability info to AS1.
 - 1c can then use IGP to distribute this new prefix reach info to all routers in AS1
 - 1b can then advertise new reachability info to AS2 over 1b-to-2a eBGP session
- When router learns of new prefix, creates entry for prefix in its forwarding table.

Path attributes & BGP routes

- When advertising a prefix, advert includes BGP attributes.
 - prefix + attributes = “route”
- Two important attributes:
 - AS-PATH: contains ASs through which prefix advertisement has passed: AS 67 AS 17
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS. (There may be multiple links from current AS to next-hop AS.)
- When gateway router receives route advertisement, uses import policy to accept/decline.
BGP: A Path-vector protocol

```
ner-routes>show ip bgp
BGP table version is 6128791, local router ID is 4.2.34.165
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
* i3.0.0.0          4.0.6.142           1000     50      0 701 80
* i4.0.0.0          4.24.1.35              0    100      0 i
* i12.3.21.0/23     192.205.32.153         0     50      0
  7018 4264 6468
* e128.32.0.0/16    192.205.32.153         0     50      0
  7018 4264 6468 25 e
```

- Every route advertisement contains the entire AS path
- Generalization of distance vector
- Can implement policies for choosing best route
- Can detect loops at an AS level

BGP Update Message

- Contains information about
 - New Routes
 - Withdrawn Routes: No longer valid
- Path Attributes:
 - Path Weights
 - Multiple Exit Discriminators
 - Local Preferences
 - Etc.
- Attribute information allows policies to be implemented

BGP routing policy

- A, B, C are provider networks
- X, W, Y are customer (of provider networks)
- X is dual-homed: attached to two networks
- X does not want to route from B via X to C
- So X will not advertise to B a route to C

BGP routing policy (2)

- A advertises to B the path AW
- B advertises to X the path BAW
- Should B advertise to C the path BAW?
 - No way! B gets no "revenue" for routing CBABW since neither W nor C are B's customers
 - B wants to force C to route to W via A
 - B wants to route only to/from its customers!

BGP route selection

- Router may learn about more than 1 route to some prefix. Router must select route.
- Elimination rules:
 1. Local preference value attribute: policy decision
 2. Shortest AS-PATH
 3. Closest NEXT-HOP router: hot potato routing
 4. Additional criteria

Multiexit Discriminators (MEDs)

One AS influences the decisions of a neighboring AS

- AS_A wants to tell AS_B that network x is closer to router 2 than to router 3
- Router 2 advertises a smaller MED value for x than Router 3
- AS_B prefers the path to x that does not go through 6 and 3
- AS_B does not propagate MEDs from AS_A any further
Attribute: Local Preference
- Used to indicate preference among multiple paths for the same prefix anywhere in the Internet.
- The higher the value the more preferred.
- Exchanged between IBGP peers only. Local to the AS.
- Often used to select a specific exit point for a particular destination.

<table>
<thead>
<tr>
<th>Destination</th>
<th>AS Path</th>
<th>Local Pref</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.20.1.0/24</td>
<td>AS3 AS1</td>
<td>300</td>
</tr>
<tr>
<td>140.20.1.0/24</td>
<td>AS2 AS1</td>
<td>100</td>
</tr>
</tbody>
</table>

BGP Policies
- Multiple ways to implement a “policy”
 - Decide not propagate advertisements
 - I’m not carrying your traffic
 - Decide not to consider MEDs but use shortest hop
 - Hot potato routing
 - Prepend own AS# multiple times to fool BGP into not thinking AS further away
 - Many others…

Why different Intra- and Inter-AS routing?
Policy:
- Inter-AS: admin wants control over how its traffic routed, who routes through its net.
- Intra-AS: single admin, so no policy decisions needed
Scale:
- Hierarchical routing saves table size, reduced update traffic
Performance:
- Intra-AS: can focus on performance
- Inter-AS: policy may dominate over performance

BGP and Performance
- BGP isn’t designed for policy routing not performance
 - Hot Potato routing is most common but suboptimal
 - Performance isn’t the greatest
- 20% of Internet paths inflated by at least 5 router hops
- Very susceptible to router misconfiguration
 - Blackholes: announce a route you cannot reach
 - October 1997 one router brought down the internet for 2 hours
 - Flood update messages (don’t store routes, but keep asking your neighbors to clue you in), 3-5 million useless withdrawals!
- In principle, BGP could diverge
 - Various solutions proposed to limit the set of allowable policies
 - Focuses on avoiding “policy cycles”