Multicast

EECS 122: Lecture 16

Department of Electrical Engineering and Computer Sciences
University of California
Berkeley

Midterm

Exam was not meant to be easy...

Performance quite good!

Worth understanding the answers...

Today

- Multicast
- RSVP

Broadcasting to Groups

- Many applications are not one-one
 - Webcasts
 - Group collaboration
 - Proxy/Cache updates
- Packets must reach a group rather than a single destination
- Group membership may be dynamic
- More than one group member might be a source
- Idea: Notion of a Group Address
 - First sender establishes group, G
 - Interested receivers join the group
 - The network takes care of group management
The Multicast service Model

- To join a multicast
 - Host finds out the group address (a class D address)
 - Sends a 'join' message to its local router
- To send to a group
 - Just send to the group
 - Packet delivery is best effort

Internet Group Management Protocol (IGMP)

- Operates between Routers and local Hosts, typically attached via a LAN (e.g., Ethernet)
- Query response architecture
 - Router periodically queries the local Hosts for group membership information
 - Can be specific or general
 - Hosts receiving query set a random timer before responding
 - First host to respond sends membership reports
 - All other hosts observe the query and suppress their own reports.
- To Join send a group send an unsolicited Join
 - Start a group by joining it
 - To leave don't have to do anything
 - Soft state

Naïve Routing Option: Don’t change anything

Point-to-point routing

Group abstraction not implemented in the network

This approach does not scale...

Instead build trees

Copy data at routers
At most one copy of a data packet per link

Issues

- How many trees per group?
 - Source-based
 - Shared
- Tree computation
 - Steiner Tree
 - Spanning Tree
 - Center based Shared Trees
 - Source based Trees with Reverse Path Forwarding
- Routing Protocols
 - DVMRP
 - PIM
How Many Trees per Group?

- **Source-based:** One tree for each source
 - **Pros**
 - Works well for webcasts
 - Can compute “Good” trees
 - **Cons**
 - In conference type applications everyone could be a source
 - Too many trees!
 - Router state explodes

- **Shared Trees:** One tree per group
 - **Pros**
 - Works well for multisource groups
 - Easier to maintain and compute
 - **Cons**
 - Link choice may not be the best for minimizing delay, maximizing throughput

Steiner Trees

- A tree which connects all the group nodes is a Steiner Tree

- Finding the min cast Steiner Tree is NP hard

Spanning Tree

- A tree that connects all of the nodes in the graph is a spanning tree
- Finding a minimum spanning tree is much easier

- Prune back to get a multicast tree
Computing spanning trees

- Many algorithms known
- Two popularly implemented approaches
 - Center based approach
 - Source based Reverse Path Forwarding and pruning

Center-based trees

- single delivery tree shared by all
- one router identified as "center" of tree
- to join:
 - edge router sends unicast join-msg addressed to center router
 - join-msg "processed" by intermediate routers and forwarded towards center
 - join-msg either hits existing tree branch for this center, or arrives at center
 - path taken by join-msg becomes new branch of tree for this router

Source Based Trees

- mcast forwarding tree: tree of shortest path routes from source to all receivers
 - Dijkstra's algorithm

Reverse Path Forwarding

- rely on router's knowledge of unicast shortest path from it to sender
- each router has simple forwarding behavior:

 \[
 \text{if (mcast datagram received on incoming link on shortest path back to center)} \\
 \quad \text{then flood datagram onto all outgoing links} \\
 \text{else ignore datagram}
 \]

Spanning Tree: Center Based Approach

- Center node
- Each node sends unicast join message to center node
 - Message forwarded until it arrives at a node already belonging to spanning tree

Reverse Path Forwarding: example

Note: Every link carries every multicast packet!
Reverse Path Forwarding: pruning

- forwarding tree contains subtrees with no mcast group members
 - no need to forward datagrams down subtree
 - "prune" msgs sent upstream by router with no downstream group members

DVMRP: continued…

- soft state: DVMRP router periodically (1 min.) "forgets" branches are pruned:
 - mcast data again flows down unpruned branch
 - downstream router: re-prune or else continue to receive data
- routers can quickly regraft to tree
 - following IGMP join at leaf
- odds and ends
 - commonly implemented in commercial routers
 - Mbone routing done using DVMRP

Tunneling

Q: How to connect “islands” of multicast routers in a “sea” of unicast routers?

- mcast datagram encapsulated inside “normal” (non-multicast-addressed) datagram
- normal IP datagram sent thru “tunnel” via regular IP unicast to receiving mcast router
- receiving mcast router unencapsulates to get mcast datagram

PIM

- Popular intradomain method
 - UUNET streaming using this
 - Recognizes that most groups are very sparse
 - Why have all of the routers participate in keeping state?
- Two modes
 - Dense mode: flood and prune
 - Sparse mode: Center(core)-based shared tree approach

Internet Multicasting Routing: DVMRP

- DVMRP: distance vector multicast routing protocol, RFC1075
- flood and prune: reverse path forwarding, source-based tree
 - RPF tree based on DVMRP’s own routing tables constructed by communicating DVMRP routers
 - no assumptions about underlying unicast
 - initial datagram to mcast group flooded everywhere via RPF
 - routers not wanting group: send upstream prune msgs

Resource Reservation Protocol: RSVP

- Signaling protocol to set up virtual circuits and trees in Intserv
 - Allows heterogeneous hosts to participate in the same group
 - Leverages multicast routing
 - Designed to keep protocol overhead linear in the number of receivers
RSVP: overview of operation
- Senders, receiver join a multicast group
- Path message from sender
 - make sender presence known to routers
 - path teardown: delete sender’s path state from routers
- Reservation message from receiver
 - reservation message: reserve resources from sender(s) to receiver
 - reservation teardown: remove receiver reservations

RSVP: simple audio conference
- H1, H2, H3, H4, H5 both senders and receivers
- multicast group m1
- no filtering: packets from any sender forwarded
- audio rate: b
- only one multicast routing tree possible

RSVP: building up path state
- next, H5 sends path message, creating more state in routers

RSVP: building up path state
- H2, H3, H5 send path msgs, completing path state tables

RSVP: building up path state
- H1, ..., H5 all send path messages on m1:
 (address=m1, Tspec=b, filter-spec=no-filter, refresh=100)
- Suppose H1 sends first path message

Reservation Msgs: receiver-to-network signaling
- reservations flow upstream from receiver-to-senders, reserving resources, creating additional, receiver-related state at routers
RSVP: receiver reservation

- H1 wants to receive audio from all other senders
 - H1 reservation msg flows uptree to sources
 - H1 only reserves enough bandwidth for 1 audio stream
 - reservation is of type "no filter" – any sender can use reserved bandwidth

RSVP: receiver reservation

- H1 reservation msgs flows uptree to sources
- routers, hosts reserve bandwidth b needed on downstream links towards H1

RSVP: receiver reservation

- next, H2 makes reservation for bandwidth b
- H2 forwards to R1, R1 forwards to H1 and R2 (?)
- R2 takes no action, since b already reserved on L6