Cyclic Redundancy Check (CRC)

- View data bits, \(d_1 d_2 \ldots d_n \), as a polynomial:
 \[
 A(x) = \sum_{i=0}^{n-1} d_i x^i.
 \]

- Choose \(r+1 \) bit pattern (generator), \(G \) (leftmost and rightmost bits are both 1), viewed again as polynomial:
 \[
 G(x) = \sum_{i=0}^{r} g_i x^i.
 \]

- Choose \(r \) CRC bits, \(R \), such that:
 \[
 A(x)x^r + R(x) = G(x)H(x)
 \]
 for some polynomial \(H(x) \). Here, addition of the polynomial coefficients is modulo 2 arithmetic.

- In other words, the polynomial represented by the concatenation of the data bits and the CRC bits is divisible by \(G(x) \).

CRC (continued)

- Note that, since in modulo 2 arithmetic, \(R(x) = -R(x) \), one can also interpret \(R(x) \) as the remainder when \(A(x)x^r \) is divided by \(G(x) \).

- Error detection: divide the received string by \(G(x) \), and if the remainder is non-zero, announce an error.

- Claim: this CRC can detect burst of errors as long as the burst is of length \(r \) or shorter.
CRC Example

Addition of 2 polynomials is the same as mod 2 addition of the components of the two vectors of 0,1's (i.e. without carryover)

\[R = \text{remainder}[\frac{D2^r}{G}] \]

Link Layer

- Introduction and services
- Error detection and correction
- Multiple access protocols
- Link-Layer Addressing
- Ethernet
Multiple Access Links and Protocols

Two types of “links”:

- **point-to-point**
 - point-to-point link between Ethernet switch and host

- **shared wire or medium**
 - traditional Ethernet
 - 802.11 wireless LAN

Multiple Access protocols

- **single shared channel**

- **two or more simultaneous transmissions by nodes: interference**
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
Ideal Multiple Access Protocol

Shared channel of rate R bps
1. When one node wants to transmit, it can send at rate R.
2. When M nodes want to transmit, each can send at average rate R/M.
3. Fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
4. Simple

MAC Protocols: a taxonomy

Three broad classes:
- **Channel Partitioning**
 - divide channel into smaller “pieces” (time slots, frequency, code)
 - allocate piece to node for exclusive use
- **Random Access**
 - channel not divided, allow collisions
 - “recover” from collisions
- **"Taking turns" (Centralized polling or token-based)**
 - Nodes take turns, but nodes with more to send can take longer turns
Channel Partitioning MAC protocols: TDMA

TDMA: time division multiple access
- access to channel in "rounds"
- each node gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-node LAN, 1,3,4 have pkt, slots 2,5,6 idle

![Diagram of TDMA](image)

Channel Partitioning MAC protocols: FDMA

FDMA: frequency division multiple access
- channel spectrum divided into frequency bands
- each node assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-node LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

![Diagram of FDMA](image)
Example: GSM

- Global System for Mobile (GSM): digital cellular standard developed in Europe.
- 25MHz band divided in 200 kHz sub-channels, further divided into time-slots.

Channel Partitioning: Pros and Cons

- **Pro**: no conflict between different nodes.
- **Con**: serious waste of resource when a node has nothing to transmit.
- **Good for continuous traffic like voice**
- **Not very efficient for bursty traffic**.
Random Access Protocols

- When node has packet to send
 - transmit at full channel data rate R
 - no a priori coordination among nodes
- two or more transmitting nodes \Rightarrow “collision”
- random access MAC protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- Examples of random access MAC protocols:
 - slotted ALOHA
 - ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

Assumptions
- all frames same size
- time is divided into equal size slots, time to transmit 1 frame
- nodes start to transmit frames only at beginning of slots
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

Operation
- when node obtains fresh frame, it transmits in next slot
- no collision, node can send new frame in next slot
- if collision, node retransmits frame in each subsequent slot with prob. p until success
Slotted ALOHA

Pros
- Single active node can continuously transmit at full rate of channel
- Highly decentralized: only slots in nodes need to be in sync
- Simple

Cons
- Collisions, wasting slots
- Idle slots
- Nodes may be able to detect collision in less than time to transmit packet

Slotted Aloha efficiency

Efficiency is the long-run fraction of successful slots when there are many nodes, each with many frames to send.

- N nodes with many frames to send, each transmits in slot with probability \(p \) (new arrival or re-Tx)
- Prob that node 1 has success in a slot = \(p(1-p)^{N-1} \)
- Prob that any node has a success = \(Np(1-p)^{N-1} \)

- For max efficiency with \(N \) nodes, find \(p^* \) that maximizes \(Np(1-p)^{N-1} \)
- For many nodes, take limit of \(Np^*(1-p^*)^{N-1} \) as \(N \) goes to infinity, gives \(1/e = .37 \)

At best: channel used for useful transmissions 37% of time!