Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": any old data structure
 - Goal test: any function over states
 - Successors: any map from states to sets of states

- Constraint satisfaction problems (CSPs):
 - State is defined by variables X_i with values from a domain D_i (sometimes D_i depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
 - Simple example of a formal representation language
 - Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: X_{ij}
 - Domains: $\{0, 1\}$
 - Constraints:
 $\forall i, j, k (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}$
 $\forall i, j, k (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}$
 $\forall i, j, k (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}$
 $\forall i, j, k (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}$
 $\sum_{i,j} X_{ij} = N$

Example: N-Queens

- Formulation 2:
 - Variables: Q_i
 - Domains: $\{11, 12, 13, \ldots, 21, \ldots N, N\}$
 - Constraints:
 $\forall i, j (Q_i, Q_j) \in \{(11, 23), (11, 24), \ldots\}$
 $\forall i, j$ non-threatening(Q_i, Q_j)

Example: Map-Coloring

- Variables: WA, NT, Q, NSW, V, SA, T
- Domain: $D = \{red, green, blue\}$
- Constraints: adjacent regions must have different colors
 - WA \neq NT
 - (WA, NT) $\notin \{(red, green), (red, blue), (green, red)\} \ldots$
- Solutions are assignments satisfying all constraints, e.g.
 - $\{WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green\}$

Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!
Example: Cryptarithmetic

- **Variables:**
 - \(F, T, U, W, R, O, X_1, X_2, X_3 \)
 - \(T \) or \(O \)

- **Domains:**
 - \(\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)

- **Constraints:**
 - \(\text{alldiff}(F, T, U, W, R, O) \)
 - \(O + O = R + 10 \cdot X_1 \)
 - \(\ldots \)

Varieties of CSPs

- **Discrete Variables**
 - Finite domains size \(d \) means \(O(d^n) \) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Need a constraint language, e.g., \(\text{StartJob}_1 + 5 < \text{StartJob}_2 \)
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)

Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 - \(S \neq q \), \(r \neq e \)
 - Binary constraints involve pairs of variables:
 - \(S \neq W, A \)
 - Higher-order constraints involve 3 or more variables:
 - E.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Spreadsheets
- Transportation scheduling
- Factory scheduling
- Floorplanning

- Many real-world problems involve real-valued variables…

Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let’s start with the straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, \(\emptyset \)
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints

Search Methods

- What does BFS do?
- What does DFS do?
- What’s the obvious problem here?
- What’s the slightly-less-obvious problem?
Backtracking Search

- Idea 1: Only consider a single variable at each point:
 - Variable assignments are commutative
 - I.e., \([\text{WA} = \text{red} \text{ then } \text{NT} = \text{green}] \text{ same as } [\text{NT} = \text{green \ then } \text{WA} = \text{red}]\)
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
- Depth-first search for CSPs with these two improvements is called backtracking search
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for \(n = 25\)

Backtracking Search

- What are the choice points?

Backtracking Example

Improving Backtracking

- General purpose ideas can give huge gains in speed:
 - Which variable should be assigned next?
 - In what order should its values be tried?
 - Can we detect inevitable failure early?
 - Can we take advantage of problem structure?

Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values
 - Why min rather than max?
 - Called most constrained variable
 - “Fail fast” ordering

Degree Heuristic

- Tie breaker among MRV variables
- Degree heuristic:
 - Choose the variable with the most constraints on remaining variables
 - Why most rather than fewest constraints?
Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables
- Idea: Terminate when any variable has no legal values

Constraint Propagation

- Forward checking propagates information from assigned to unassigned variables, but doesn’t provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn’t we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)

Arc Consistency

- Simplest form of propagation makes each arc consistent
- $X \rightarrow Y$ is consistent if for every x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What’s the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph

- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is $O((n/c)(d^2))$, linear in n
 - E.g., $n = 80$, $d = 2$, $c = 20$
 - $2^{20} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Function: $\text{SCSP}(\text{cap})$ returns the CSP, possibly with reduced domains

Function: $\text{REDUCE-DOMAIN}(\text{X}, \text{X})$ returns new, if it succeeds
- for each x in $\text{DO(VUAL}(\text{X})$ do
 - if no value y in $\text{DO(VUAL}(\text{X})$ allows $\text{A}[x] \rightarrow \text{A}[y]$ to satisfy the constraint $\text{X} \rightarrow \text{Y}$ then
 - return new
- return new

Runtime: $O(n^2 d^2)$, can be reduced to $O(n^2 d^2)$
- ... but detecting all possible future problem is NP-hard – why?
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time
 - Compare to general CSPs, where worst-case time is $O(d^n)$
 - This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

```
Tree-Structured CSPs

Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

For $i = n : 2$, apply RemoveInconsistent(Parent(Xi),Xi)
For $i = 1 : n$, assign Xi consistently with Parent(Xi)
Runtime: $O(n d^2)$
```

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^2)(n-c) d^2)$, very fast for small c

```
Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains
Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
Cutset size $c$ gives runtime $O((d^2)(n-c) d^2)$, very fast for small $c$
```

Iterative Algorithms for CSPs

- Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hillclimb with $h(n) = $ total number of violated constraints

```
Iterative Algorithms for CSPs

Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned
To apply to CSPs:
  Allow states with unsatisfied constraints
  Operators reassign variable values
Variable selection: randomly select any conflicted variable
Value selection by min-conflicts heuristic:
  Choose value that violates the fewest constraints
  I.e., hillclimb with $h(n) = $ total number of violated constraints
```

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) = $ number of attacks

```
Example: 4-Queens

States: 4 queens in 4 columns ($4^4 = 256$ states)
Operators: move queen in column
Goal test: no attacks
Evaluation: $h(n) = $ number of attacks
```

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $R = \frac{\text{number of constraints}}{\text{number of variables}}$

```
Performance of Min-Conflicts

Given random initial state, can solve $n$-queens in almost constant time for arbitrary $n$ with high probability (e.g., $n = 10,000,000$)
The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio $R = \frac{\text{number of constraints}}{\text{number of variables}}$
```
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice