CS61B Lecture #19

Administrative:

- Please arrange alternative test times with us by e-mail.
- Labs this week devoted to test review. We suspect that Wednesday labs will get commandeered by project questions, so you might want to attend a Thursday lab as well if you want test review.
- A few review questions from the TAs are posted in the Lab #6 directory for this week (see the homework page).
- If you want timely response, use bug-submit.

Today:

- Trees

Readings for Today:
Data Structures, Chapter 5

Readings for Next Topic:
Data Structures, Chapter 6
A Recursive Structure

- Trees naturally represent recursively defined, hierarchical objects with more than one recursive subpart for each instance.

- Common examples: expressions, sentences.
 - Expressions have definitions such as “an expression consists of a literal or two expressions separated by an operator.”

- Also describe structures in which we recursively divide a set into multiple subsets.
Fundamental Operation: Traversal

- **Traversing a tree** means enumerating (some subset of) its nodes.
- Typically done recursively, because that is natural description.
- As nodes are enumerated, we say they are **visited**.
- Three basic orders for enumeration (+ variations):
 - **Preorder**: visit node, traverse its children.
 - **Postorder**: traverse children, visit node.
 - **Inorder**: traverse first child, visit node, traverse second child (binary trees only).

![Tree traversal examples](image)
Preorder Traversal and Prefix Expressions

Problem: Convert

\[- - (* x (+ y 3)) z\]

\[
\begin{array}{c}
\text{Problem: Convert} \\
\begin{array}{c}
\text{toLisp (Tree<String> T) \{} \\
\quad \text{if (T == null)} \\
\quad \quad \text{return "";} \\
\quad \text{else if (T.degree () == 0)} \\
\quad \quad \text{return T.label ();} \\
\quad \text{else \{} \\
\quad \quad \text{String R; R = "";} \\
\quad \quad \text{for (int i = 0; i < T.numChildren (); i += 1)} \\
\quad \quad \quad \text{R += " " + toLisp (T.child (i));} \\
\quad \quad \text{return String.format ("(%s%s)", T.label (), R);} \\
\quad \}\}
\end{array}
\end{array}
\]
Problem: Convert

\[- - \ast x + y 3 \Rightarrow ((-(x\ast(y+3)))-z)\]

To think about: how to get rid of all those parentheses.

static String toInfix (Tree<String> T) {
 if (T == null)
 return "";
 if (T.degree () == 0)
 return T.label ();
 else {
 return String.format ("(%s%s%s)",
 toInfix (T.left ()), T.label (), toInfix (T.right ()))
 }
}
Postorder Traversal and Postfix Expressions

Problem: Convert

\[
\begin{array}{c}
 - \\
 - \quad z \\
 * \\
 \quad x \\
 + \\
 \quad y \\
 3
\end{array}
\quad \Rightarrow \quad x \ y \ 3 \ +:2 \ *:2 \ -:1 \ z \ -:2
\]

```java
static String toPolish (Tree<String> T) {
    if (T == null)
        return "";
    else {
        String R; R = "";
        for (int i = 0; i < T.numChildren (); i += 1)
            R += toPolish (T.child (i)) + " ";
        return String.format ("%s%s:%d", R, T.label (), T.degree ());
    }
}
```
A General Traversal: The Visitor Pattern

void preorderTraverse (Tree T<Label>, Action<Label> whatToDo)
{
 if (T != null) {
 whatToDo.action (T);
 for (int i = 0; i < T.numChildren (); i += 1)
 preorderTraverse (T.child (i), whatToDo);
 }
}

• What is Action?

interface Action<Label> {
 void action (Tree<Label> T);
}

class Print implements Action<String> |
 preorderTraverse (myTree, |
 void action (Tree<String> T) {
 System.out.print (T.label ()); |
 }
 }

The traversal algorithms have roughly the form of the boom example in §1.3.3 of Data Structures—an exponential algorithm.

However, the role of M in that algorithm is played by the height of the tree, not the number of nodes.

In fact, easy to see that tree traversal is linear: $\Theta(N)$, where N is the # of nodes: Form of the algorithm implies that there is one visit at the root, and then one visit for every edge in the tree. Since every node but the root has exactly one parent, and the root has none, must be $N - 1$ edges in any non-empty tree.

In positional tree, is also one recursive call for each empty tree, but # of empty trees can be no greater than kN, where k is arity.

For k-ary tree (max # children is k), $h + 1 \leq N \leq \frac{k^{h+1}-1}{k-1}$, where h is height.

So $h \in \Omega(\log_k N) = \Omega(\lg N)$ and $h \in O(N)$.

Many tree algorithms look at one child only. For them, time is proportional to the height of the tree, and this is $\Theta(\lg N)$, assuming that tree is bushy—each level has about as many nodes as possible.
Level-Order (Breadth-First) Traversal

Problem: Traverse all nodes at depth 0, then depth 1, etc:

```
0
  1  2
    3 4 5
      6
```

- One technique: **Iterative Deepening.** For each level, \(k \), from 0 to \(h \), call doLevel(T, k)

```
void doLevel (Tree T, int lev) {
    if (lev == 0)
        visit T
    else
        for each non-null child, C, of T {
            doLevel (C, lev-1);
        }
}
```
Iterative Deepening Time?

- Let \(h \) be height, \(N \) be \# of nodes.
- Count \# edges traversed (i.e, \# of calls, not counting null nodes).
- First (full) tree: 1 for level 0, 3 for level 1, 7 for level 2, 15 for level 3.
 - Or in general \((2^1 - 1) + (2^2 - 1) + \ldots + (2^{h+1} - 1) = 2^{h+2} - h \in \Theta(N)\), since \(N = 2^{h+1} - 1 \) for this tree.
- Second (right leaning) tree: 1 for level 0, 2 for level 2, 3 for level 3.
 - Or in general \((h + 1)(h + 2)/2 = N(N + 1)/2 \in \Theta(N^2)\), since \(N = h + 1 \) for this kind of tree.
Iterative Traversals

• Tree recursion conceals data: a stack of nodes (all the T arguments) and a little extra information. Can make the data explicit, e.g.:

```java
void preorderTraverse2 (Tree T<T>, Action whatToDo) {
    Stack s = new Stack ();
    s.push (T);
    while (! s.isEmpty ()) {
        Tree node = (Tree) s.pop ();
        if (node == null)
            continue;
        whatToDo.action (node);
        for (int i = node.numChildren ()-1; i >= 0; i -= 1)
            s.push (node.child (i));
    }
}
```

• To do a breadth-first traversal, use a queue instead of a stack, replace push with add, and pop with removeFirst.

• Makes breadth-first traversal worst-case linear time in all cases, but also linear space for “bushy” trees.
Iterators for Trees

- Frankly, iterators are not terribly convenient on trees.
- But can use ideas from iterative methods.

```java
class PreorderTreeIterator<T> implements Iterator<T> {
    private Stack<Tree<T>> s = new Stack<Tree<T>>() {
        
    public PreorderTreeIterator (Tree<T> T) { s.push (T); }

    public boolean hasNext () { return ! s.isEmpty (); }
    public T next () {
        Tree<T> result = s.pop ();
        for (int i = result.numChildren ()-1; i >= 0; i -= 1)
            s.push (result.child (i));
        return result.label ();
    }
    void remove () { throw new UnsupportedOperationException ( ); }
}
```

Example: (what do I have to add to class Tree first?)

```java```
    for (String label : aTree) System.out.print (label + " ");
```java```
Representation Choices

(a) Embedded child pointers
 (+ optional parent pointers)

(b) Array of child pointers
 (+ optional parent pointers)

(c) child/sibling pointers

(d) pre-order array
 (complete trees)